1,451 research outputs found

    Expert System for Development Diagnosing Disease with Hepatitis Using Wamp

    Full text link
    Expert systems are computer-based system that usesknowledge, facts and reasoning techniques in solving problemsusually only be solved by an expert in a particular field. Systemexperts to provide added value in technology to assist in handlingera of increasingly sophisticated information.Expert System produces output in the form of disease possiblehepatitis based on symptoms suffered by the user. This system alsomanampilkan amount of trust against the possibility of disease symptomskidney suffered by the user. The value of these beliefs isresults of calculations using the method-Factor Certainly.This expert system is designed with the view that considering the ease inin pengoprasiannya.Bibliography : (xiv + 93 + 33 Appendix

    Expert System Development for Diagnose Disease Hepatitis Using Wamp 2003

    Full text link
    Sistem pakar adalah sistem berbasis komputer yang menggunakan pengetahuan,fakta, dan tehnik penalaran dalam memecahkan masalah yang biasanya hanyadapat dipecahkan oleh seorang pakar dalam bidang tertentu. Sistem pakarmemberikan nilai tambah pada teknologi untuk membantu dalam menangani erainformasi yang semakin canggih. Sistem Pakar ini menghasilkan keluaranberupa kemungkinan penyakit hepatitis yang diderita berdasarkan gejala yangdirasakan oleh user. Sistem ini juga manampilkan besarnya kepercayaan gejalatersebut terhadap kemungkinan penyakit ginjal yang diderita oleh user.Besarnya nilai kepercayaan tersebut merupakan hasil perhitungan denganmenggunakan metode Certainly-Factor. Sistem pakar ini dirancang dengantampilan yang memperhatikan kemudahan di dalam pengoprasiannya

    Reconstructing the potentials for the quintessence and tachyon dark energy, from the holographic principle

    Full text link
    We propose an holographic quintessence and tachyon models of dark energy. The correspondence between the quintessence and tachyon energy densities with the holographic density, allows the reconstruction of the potentials and the dynamics for the quintessence and tachyon fields, in flat FRW background. The proposed infrared cut-off for the holographic energy density works for two cases of the constant α\alpha: for α<1\alpha<1 we reconstructed the holographic quintessence model in the region before the ω=1\omega=-1 crossing for the EoS parameter. The cosmological dynamics for α>1\alpha>1 was also reconstructed for the holographic quintessence and tachyon models.Comment: 21 pages, 18 figures, 2 table

    Quantum effects, soft singularities and the fate of the universe in a braneworld cosmology

    Full text link
    We examine a class of braneworld models in which the expanding universe encounters a "quiescent" future singularity. At a quiescent singularity, the energy density and pressure of the cosmic fluid as well as the Hubble parameter remain finite while all derivatives of the Hubble parameter diverge (i.e., H˙{\dot H}, H¨{\ddot H}, etc. \to \infty). Since the Kretschmann invariant diverges (RiklmRiklmR_{iklm}R^{iklm} \to \infty) at the singularity, one expects quantum effects to play an important role as the quiescent singularity is approached. We explore the effects of vacuum polarization due to massless conformally coupled fields near the singularity and show that these can either cause the universe to recollapse or, else, lead to a softer singularity at which HH, H˙{\dot H}, and H¨{\ddot H} remain finite while {\dddot H} and higher derivatives of the Hubble parameter diverge. An important aspect of the quiescent singularity is that it is encountered in regions of low density, which has obvious implications for a universe consisting of a cosmic web of high and low density regions -- superclusters and voids. In addition to vacuum polarization, the effects of quantum particle production of non-conformal fields are also likely to be important. A preliminary examination shows that intense particle production can lead to an accelerating universe whose Hubble parameter shows oscillations about a constant value.Comment: 19 pages, 3 figures, text slightly improved and references added. Accepted for publication in Classical and Quantum Gravit

    Probing Cosmic Acceleration Beyond the Equation of State: Distinguishing between Dark Energy and Modified Gravity Models

    Full text link
    If general relativity is the correct theory of physics on large scales, then there is a differential equation that relates the Hubble expansion function, inferred from measurements of angular diameter distance and luminosity distance, to the growth rate of large scale structure. For a dark energy fluid without couplings or an unusual sound speed, deviations from this consistency relationship could be the signature of modified gravity on cosmological scales. We propose a procedure based on this consistency relation in order to distinguish between some dark energy models and modified gravity models. The procedure uses different combinations of cosmological observations and is able to find inconsistencies when present. As an example, we apply the procedure to a universe described by a recently proposed 5-dimensional modified gravity model. We show that this leads to an inconsistency within the dark energy parameter space detectable by future experiments.Comment: 8 pages, 7 figures; expanded paper; matches PRD accepted version; corrected growth rate formula; main results and conclusion unchange

    Quintessential Inflation on the Brane and the Relic Gravity Wave Background

    Full text link
    Quintessential inflation describes a scenario in which both inflation and dark energy (quintessence) are described by the same scalar field. In conventional braneworld models of quintessential inflation gravitational particle production is used to reheat the universe. This reheating mechanism is very inefficient and results in an excessive production of gravity waves which violate nucleosynthesis constraints and invalidate the model. We describe a new method of realizing quintessential inflation on the brane in which inflation is followed by `instant preheating' (Felder, Kofman & Linde 1999). The larger reheating temperature in this model results in a smaller amplitude of relic gravity waves which is consistent with nucleosynthesis bounds. The relic gravity wave background has a `blue' spectrum at high frequencies and is a generic byproduct of successful quintessential inflation on the brane.Comment: 9 pages, 5 eps figures. Discussion and one eps figure summarizing the GB correction to steep brane world inflation added, typos corrected and references added; final version to appear in PR

    Quantum vacuum effects as generalized f(R) gravity. Application to stars

    Get PDF
    It is assumed that, for weak spacetime curvature, the main gravitational effect of the quantum vacuum stress-energy corresponds to adding two terms to the Einstein-Hilbert action, proportional to the square of the curvature scalar and to the contraction of two Ricci tensors, respectively. It is shown that compatibility with terrestrial and solar systems observaction implies that the square roorts of the coefficients of these terms should be either a few millimeters or a few hundred meters. It is shown that the vacuum contribution increase the stability of white dwarfs.Comment: GEneralizes and improves previous versio

    Delicate f(R) gravity models with disappearing cosmological constant and observational constraints on the model parameters

    Full text link
    We study the f(R)f(R) theory of gravity using metric approach. In particular we investigate the recently proposed model by Hu-Sawicki, Appleby - Battye and Starobinsky. In this model, the cosmological constant is zero in flat space time. The model passes both the Solar system and the laboratory tests. But the model parameters need to be fine tuned to avoid the finite time singularity recently pointed in the literature. We check the concordance of this model with the H(z)H(z) and baryon acoustic oscillation data. We find that the model resembles the Λ\LambdaCDM at high redshift. However, for some parameter values there are variations in the expansion history of the universe at low redshift.Comment: 16 pages and 9 figures, typos corrected, few references and minor clarifications added, revised version to appera in PR

    Linearized gravity on the Randall-Sundrum two-brane background with curvature terms in the action for the branes

    Full text link
    We study gravitational perturbations in the Randall-Sundrum two-brane background with scalar-curvature terms in the action for the branes, allowing for positive as well as negative bulk gravitational constant. In the zero-mode approximation, we derive the linearized gravitational equations, which have the same form as in the original Randall-Sundrum model but with different expressions for the effective physical constants. We develop a generic method for finding tachyonic modes in the theory, which, in the model under consideration, may exist only if the bulk gravitational constant is negative. In this case, if both brane gravitational constants are nonzero, the theory contains one or two tachyonic mass eigenvalues in the gravitational sector. If one of the brane gravitational constants is set to zero, then either a single tachyonic mass eigenvalue is present or tachyonic modes are totally absent depending on the relation between the nonzero brane gravitational constant and brane separation. In the case of negative bulk gravitational constant, the massive gravitational modes have ghost-like character, while the massless gravitational mode is not a ghost in the case where tachyons are absent.Comment: 23 pages, revtex, published versio

    Can the Chaplygin gas be a plausible model for dark energy?

    Get PDF
    In this note two cosmological models representing the flat Friedmann Universe filled with a Chaplygin fluid, with or without dust, are analyzed in terms of the recently proposed "statefinder" parameters. Trajectories of both models in the parameter plane are shown to be significantly different w.r.t. "quiessence" and "tracker" models. The generalized Chaplygin gas model with an equation of state of the form p=A/ραp = -A/\rho^{\alpha} is also analyzed in terms of the statefinder parameters.Comment: 6 pages, 2 figure
    corecore