187 research outputs found

    Improving the spatial and statistical accuracy in X-ray Raman scattering based direct tomography

    Get PDF
    An algorithm to simultaneously increase the spatial and statistical accuracy of X-ray Raman scattering (XRS) based tomographic images is presented. Tomography that utilizes XRS spectroscopy signals as a contrast for the images is a new and promising tool for investigating local atomic structure and chemistry in heterogeneous samples. The algorithm enables the spatial resolution to be increased based on a deconvolution of the optical response function of the spectrometer and, most importantly, it allows for the combination of data collected from multiple analyzers and thus enhances the statistical accuracy of the measured images.Peer reviewe

    COVID-19 in Malawi: Civil Society Mobilization for Socio-Economic Rights and Constitutionality

    Get PDF
    This article highlights the inequalities that the COVID-19 pandemic has revealed at multiple scales. Additionally, it analyzes civil society mobilization aimed at holding the state accountable for socioeconomic rights and democratic constitutional practices in the context of such inequalities in Malawi. Its main objective is to analyze and demonstrate the political agency of local social actors in Malawi and other parts of the African continent in addressing the challenges that COVID-19 has generated

    Assessing temperature effects on multipole contributions and angular dependence in core-level spectroscopies

    Get PDF
    This study aims at assessing the thermal nuclei motion effects on the multipole transition channels involved in two core-level spectroscopies, x-ray absorption spectroscopy (XAS) and x-ray Raman scattering (XRS). Temperature effects on the 1s -> s monopole, 1s -> p dipole, and 1s -> d quadrupole transitions are investigated using two reference systems for which we present original experimental data: alpha-Al2O3 at the Al K edge probed by XRS at room temperature and rutile TiO2 at the Ti K pre-edge probed by XAS at temperatures ranging from 6 to 700 K. Through the latter, this work enlightens the part of the pre-edge peak enhancement due to temperature in the K pre-edge region of 3d transition metal, which is known to be routinely used to determine the concentration, valence or symmetry of the probed element in a given sample. Nuclear thermal fluctuations are taken into account using a method based on density functional theory that consists in averaging spectra over atomic configurations, generated within the harmonic approximation and obeying quantum statistics at finite temperature. Since only a finite number of such configurations are used, the numerically averaged spectra generally lose the symmetry of the equilibrium crystal positions. In this paper, we demonstrate that the physical average has to be symmetric and propose a method to restore the physical angular dependence of the spectra. The approach is successfully applied to investigate the angular dependent XAS spectra in rutile as a function of temperature. The two systems under study allow to draw general conclusions regarding the effect of nuclear quantum fluctuations on the different transition channels available to both core-level spectroscopies.Peer reviewe

    Behavioral manipulation of Drosophila suzukii for pest control: high attraction to yeast enhances insecticide efficacy when applied on leaves

    Get PDF
    BACKGROUND The invasive pest, Drosophila suzukii attacks fresh soft-skinned fruit. Broad-spectrum insecticides are implemented for control but there is a need to reduce environmental risks and insecticide residues on fruits. Hanseniaspora uvarum is a yeast frequently found on ripe fruits and associated with D. suzukii. We aim to exploit the ecological association and attraction of D. suzukii to H. uvarum by developing an attract-and-kill strategy, with spray-application on canopy but not fruit. We therefore investigated D. suzukii attraction, egg-laying and mortality when exposed to insecticidal yeast-based formulations. RESULTS Hanseniaspora uvarum strongly attracted D. suzukii when applied on leaves of grapevine, Vitis vinifera. Notably, this attractiveness was competitive to ripe grape berries that were susceptible to D. suzukii infestation. Moreover, adding H. uvarum enhanced the efficacy of insecticidal formulations against D. suzukii. Flies exposed to leaves treated with yeast-insecticide formulations showed higher mortality and laid a lower number of eggs compared to flies exposed to insecticide alone. In a wind tunnel, all treatments containing H. uvarum alone or in combination with insecticides, caused similar upwind flight and landing at the odor source, which provides evidence that the addition of insecticide did not reduce D. suzukii attraction to yeast. CONCLUSION Hanseniaspora uvarum can be used to manipulate the behavior of D. suzukii by attracting flies to insecticide formulations. Yeast attraction is competitive to grape berries and improves insecticide effectiveness, suggesting that sprays covering canopy only, could reduce residues on fruit without compromising management efficacy

    Anomalous density, sound velocity, and structure of pressure-induced amorphous quartz

    Get PDF
    The study of quartz and other silica systems under pressure is one of the most prolific domains of research over the past 50 years because of their applications in material science and fundamental relevance to planetary interiors. The characterization of the amorphous state is essential for the comprehension of pressure-induced amorphization of minerals, the metamorphism observed in shocked materials, and the study of melt structures under pressure. Here, we measured in situ, under static compression the density, sound velocities, and electronic structure of quartz as it passes through its pressure-induced amorphization transition. The transition pressure could be derived from the abrupt increase in density and sound velocity at 24 GPa, and from strong changes in the silicon L2,3 edge and oxygen K edge between 22 and 27 GPa observed in x-ray Raman scattering data, confirming previous results from x-ray diffraction. Above this pressure, our data show an anomalous behavior in density, sound velocity, and electronic fine structure compared to the cold compressed glass and other silica polymorphs. The pressure-induced amorphous quartz has a lower density relative to that of the compressed glass, consistent with the lower average coordination inferred from a different signature in the Si L2,3 and O K electronic absorption edges measured by x-ray Raman scattering spectroscopy. This behavior sheds light on the pressure limit of tetrahedral units in SiO2 components and the existence of polyamorphism in network-forming materials, and highlights the possibility to discriminate between different amorphous states with x-ray Raman scattering spectroscopy

    A large-solid-angle X-ray Raman scattering spectrometer at ID20 of the European Synchrotron Radiation Facility

    Get PDF
    An end-station for X-ray Raman scattering spectroscopy at beamline ID20 of the European Synchrotron Radiation Facility is described. This end-station is dedicated to the study of shallow core electronic excitations using non-resonant inelastic X-ray scattering. The spectrometer has 72 spherically bent analyzer crystals arranged in six modular groups of 12 analyzer crystals each for a combined maximum flexibility and large solid angle of detection. Each of the six analyzer modules houses one pixelated area detector allowing for X-ray Raman scattering based imaging and efficient separation of the desired signal from the sample and spurious scattering from the often used complicated sample environments. This new end-station provides an unprecedented instrument for X-ray Raman scattering, which is a spectroscopic tool of great interest for the study of low-energy X-ray absorption spectra in materials under insitu conditions, such as inoperando batteries and fuel cells, insitu catalytic reactions, and extreme pressure and temperature conditions.Peer reviewe

    Mental Health During COVID-19: Community-Based Arts Addressing African American Experiences

    Get PDF
    Focusing on African American experiences, this article explores the pursuit of mental health as a human right during COVID-19, and the capacity of arts-based community engagement initiatives to historicize and deepen such efforts. Given the syndemic nature of COVID-19 health inequities, this research explores the arc of VITAL Health and My Life Matters projects in their engagement with mental health injustices and freedom struggles that respond to race-based traumatic stress and intergenerational trauma in the United States. With performances and workshops reaching thousands of audience members in North Carolina and nationally, these programs have centered Black mental health, offering creative, history-engaged opportunities for intra- and interpersonal connection and reflection. Through discourse analysis and critical ethnography, we propose that cultural performance initiatives can expand public engagement with mental health resources during overlapping public health crises by gathering people to (a) honor grief and mutually envision change, (b) host dialogic connection for truth-telling and imagination, (c) communally embody supportive care and emancipatory engagement

    RIXS observation of bond-directional nearest-neighbor excitations in the Kitaev material Na2_2IrO3_3

    Full text link
    Spin-orbit coupling locks spin direction and spatial orientation and generates, in semi-classical magnets, a local spin easy-axis and associated ordering. Quantum spin-1/2's defy this fate: rather than spins becoming locally anisotropic, the spin-spin interactions do. Consequently interactions become dependent on the spatial orientation of bonds between spins, prime theoretical examples of which are Kitaev magnets. Bond-directional interactions imply the existence of bond-directional magnetic modes, predicted spin excitations that render crystallographically equivalent bonds magnetically inequivalent, which yet have remained elusive experimentally. Here we show that resonant inelastic x-ray scattering allows us to explicitly probe the bond-directional character of magnetic excitations. To do so, we use a scattering plane spanned by one bond and the corresponding spin component and scan a range of momentum transfer that encompasses multiple Brillouin zones. Applying this approach to Na2_2IrO3_3 we establish the different bond-directional characters of magnetic excitations at 10 meV and 45 meV. Combined with the observation of spin-spin correlations that are confined to a single bond, this experimentally validates the Kitaev character of exchange interactions long proposed for this material.Comment: 6 pages, 5 figures, plus 4 pages Supplementary Information (incl. 5 figures
    corecore