15 research outputs found

    Variability and Change in the West Antarctic Peninsula Marine System: Research Priorities and Opportunities

    Get PDF
    The west Antarctic Peninsula (WAP) region has undergone significant changes in temperature and seasonal ice dynamics since the mid-twentieth century, with strong impacts on the regional ecosystem, ocean chemistry and hydrographic properties. Changes to these long-term trends of warming and sea ice decline have been observed in the 21st century, but their consequences for ocean physics, chemistry and the ecology of the high-productivity shelf ecosystem are yet to be fully established. The WAP shelf is important for regional krill stocks and higher trophic levels, whilst the degree of variability and change in the physical environment and documented biological and biogeochemical responses make this a model system for how climate and sea ice changes might restructure high-latitude ecosystems. Although this region is arguably the best-measured and best-understood shelf region around Antarctica, significant gaps remain in spatial and temporal data capable of resolving the atmosphere-ice-ocean-ecosystem feedbacks that control the dynamics and evolution of this complex polar system. Here we summarise the current state of knowledge regarding the key mechanisms and interactions regulating the physical, biogeochemical and biological processes at work, the ways in which the shelf environment is changing, and the ecosystem response to the changes underway. We outline the overarching cross-disciplinary priorities for future research, as well as the most important discipline-specific objectives. Underpinning these priorities and objectives is the need to better define the causes, magnitude and timescales of variability and change at all levels of the system. A combination of traditional and innovative approaches will be critical to addressing these priorities and developing a co-ordinated observing system for the WAP shelf, which is required to detect and elucidate change into the future

    Long-term multidisciplinary research along a gradient of high latitudes to track climate change: from station-based studies to new observatory concepts

    No full text
    The coastal polar and subpolar systems are particularly affected by a rapid regional climate change. Gathering hydrographic core and specific ecological data for the past 25 years at the Dallmann-Carlini station in Potter Cove (King George Island, South Shetland Islands) has proven a continuous observation to be essential for understanding the dynamic changes of marine and terrestrial ecosystems in the Northern West Antarctic Peninsula (WAP) sector. Several long-term ecological data series were analyzed to track climate change across system compartments from glaciology to community composition. It is for the first time ever that the ecological impacts of the transgression from a tidewater to an exclusively land based glacier in an Antarctic cove is documented by a multi-disciplinary research team. While focusing on the climate change related processes in the showcase area Potter Cove, expansion of the research scope to compare the local King George Island to the regional recent and late Holocene deglaciation patterns at the WAP are planed through cross station networking with USA and UK partner activities in different areas of the WAP (recent Belmont call on Biodiversity and Ecosystem Services proposal FjordBioServices) and towards the sub-Antarctic systems of Tierra del Fuego. In order to improve our understanding of climate change effects on highly dynamic and understudied areas in the Antarctic and Sub-Antarctic the SCAR community highlighted the importance of coastal observatories. Mirroring our previous multinational, interdisciplinary observations in Potter Cove, BLOOMS, we introduce to the Beagle Land and Ocean Observing and Modelling System, a multinational (Argentinian, Chilean, German, and USA) and interdisciplinary initiative to study the effects of climate change on terrestrial and marine systems. A first workshop on the implementation of an observatory, supported by Argentinian and German funds within the frame of the DynAMo project (Dynamic Effects of Climate Change and loss of ice mass on terrestrial, limnic and marine ecosystems in Patagonia, BMBF), addressed main scientific questions and discussed local stakeholder involvement. A first joint field mission is planned for austral spring 2018, and instruments are planned to be launched in 2019

    Modelling suspended particulate matter dynamics at an Antarctic fjord impacted by glacier melt

    Get PDF
    When Antarctic glaciers retreat, high sediment loads from geomorphological and glaciological sources can disturb the biota, especially filtering organisms, and thereby significantly alter the ecology of the Antarctic coast. We applied the Finite volumE Sea-ice Ocean-Coastal Model (FESOM-C), a numerical tool equipped with a sediment module, to simulate for the first time the suspended particulate matter (SPM) dynamics in a fjordic environment at the northern West Antarctic Peninsula, Potter Cove as a case study. Depth-averaged SPM dynamics during a meteorologically representative austral summer (120 days from December to March) considered tidal and atmospheric forcing. Additionally, idealised experiments with passive particles based on post-processing Lagrangian module identified and followed possible material trajectories in Potter Cove. Particle dynamics in the area show them to be primarily tidal and wind-driven, sensitive to bathymetry, with the higher SPM concentrations in the inner cove and the highest hydrographical complexity in the transitional area between the fjordic and marine habitat. The SPM plume covers 5.5 km^2 of the total inlet of 9 km^2, with monthly mean values between 15 and 330 mg/l. The maximum SPM concentrations are during January (790 mg/l), and the maximum plume expansion during February. The model was validated with available in situ measurements. With this study, we can identify areas in Potter Cove (and similar coastal fjordic environments, prospectively) of increasing physical stress by longer SPM residence time and high accumulation rates induced by glacial meltwater. These factors are crucial for pelagic and benthic assemblages dependent on light and food availability, as well sediment deposition

    Molecular responses to ocean acidification in an Antarctic bivalve and an ascidian

    No full text
    Southern Ocean organisms are considered particularly vulnerable to Ocean acidification (OA), as they inhabit cold waters where calcite-aragonite saturation states are naturally low. It is also generally assumed that OA would affect calcifying animals more than non-calcifying animals. In this context, we aimed to study the impact of reduced pH on both types of species: the ascidian Cnemidocarpa verrucosa sp. A, and the bivalve Aequiyoldia eightsii, from an Antarctic fjord. We used gene expression profiling and enzyme activity to study the responses of these two Antarctic benthic species to OA. We report the results of an experiment lasting 66 days, comparing the molecular mechanisms underlying responses under two pCO2 treatments (ambient and elevated pCO2). We observed 224 up-regulated and 111 down-regulated genes (FC ≥ 2; p-value ≤ 0.05) in the ascidian. In particular, the decrease in pH caused an upregulation of genes involved in the immune system and antioxidant response. While fewer differentially expressed (DE) genes were observed in the infaunal bivalve, 34 genes were upregulated, and 69 genes were downregulated (FC ≥ 2; p-value ≤ 0.05) in response to OA. We found downregulated genes involved in the oxidoreductase pathway (such as glucose dehydrogenase and trimethyl lysine dioxygenase), while the heat shock protein 70 was up-regulated. This work addresses the effect of OA in two common, widely distributed Antarctic species, showing striking results. Our major finding highlights the impact of OA on the non-calcifying species, a result that differ from the general trend, which describes a higher impact on calcifying species. This calls for discussion of potential effects on non-calcifying species, such as ascidians, a diverse and abundant group that form extended three-dimensional clusters in shallow waters and shelf areas in the Southern Ocean.Fil: Servetto, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; ArgentinaFil: Ruiz, M. B.. Universitat Essen; AlemaniaFil: Martínez, M.. Universidad de la República; UruguayFil: Harms, L.. Helmholtz Centre for Polar and Marine Research; AlemaniaFil: de Aranzamendi, Maria Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; ArgentinaFil: Alurralde, Gastón. Stockholm University Of The Arts (uniarts);Fil: Giménez, Diego R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; ArgentinaFil: Abele, D.. Helmholtz Centre for Polar and Marine Research; AlemaniaFil: Held, C.. Helmholtz Centre for Polar and Marine Research; AlemaniaFil: Sahade, Ricardo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentin

    Respiratory responses of three Antarctic ascidians and a sea pen to increased sediment concentrations

    No full text
    Glacial retreat and subglacial bedrock erosion are consequences of rapid regional warming on the West Antarctic peninsula. Sedimentation of fine grained eroded particles can impact the physiology of filter feeding benthic organisms. We investigated the effect of increasing concentrations of sediment on the oxygen consumption of suspension feeding species, the ascidians Molgula pedunculata, Cnemidocarpa verrucosa, Ascidia challengeri, and the pennatulid Malacobelemnon daytoni in Potter Cove (South Shetland Islands, Antarctica). In A. challengeri and C. verrucosa oxygen consumption increased gradually up to a critical sediment concentration (Ccrit) where species oxygen consumption was maximal (Omax in mg O2 g-1 dm d-1) and further addition of sediments decreased respiration. Ccrit was 200 mg L-1 for A. challengeri (Omax of 0.651 ± 0.238) and between 100 and 200 mg L-1 for C. verrucosa (Omax of 0.898 ± 0.582). Oxygen consumption of M. pedunculata increased significantly even at low sediment concentrations (15-50 mg sediment L-1). Contrary to the ascidians, sediment exposure did not affect oxygen consumption of the sea pen. The tiered response to sedimentation in the four species corroborates recent field observations that detected a reduction in abundance of the sensitive ascidian Molgula pedunculata from areas strongly affected by glacial sediment discharge, whereas sea pens are increasing in abundance. Our investigation relates consequences (population shifts in filter feeder communities) to causes (glacial retreat) and is of importance for modelling of climate change effects in Antarctic shallow coastal areas

    Reproductive biology of the Antarctic “sea pen” Malacobelemnon daytoni (Octocorallia, Pennatulacea, Kophobelemnidae)

    Get PDF
    The reproductive biology of the sea pen Malacobelemnon daytoni was studied at Potter Cove, South Shetland Islands, where it is one of the dominant species in shallow waters. Specimens collected at 15–22 m depth were examined by histological analysis. M. daytoni is gonochoristic and exhibited a sex ratio of 1:1. Oocyte sizes (>300 µm) and the absence of embryos or newly developed larvae in the colonies suggest that this species can have lecithotrophic larvae and experience external fertilization. This life strategy is in line with other members of the group and supports the hypothesis that this could be a phylogenetically fixed trait for pennatulids. It was observed that oocytes were generated by gastrodermic tissue and released to the longitudinal canal. Thereafter, they migrate along the canal until they reach maturity and are released by autozooids at the top of the colonies. This striking feature has not yet been reported for other pennatulaceans. Mature oocytes were observed from colonies of 15 mm in length, suggesting that sexual maturity can be reached rapidly. This is contrary to what is hypothesized for the vast majority of Antarctic benthic invertebrates, namely that rates of activities associated with development, reproduction and growth are almost universally very slow. This strategy may also explain the ecological success of M. daytoni in areas with high ice impact as in the shallow waters of Potter Cove
    corecore