32 research outputs found

    Correction to: The genetic architecture of Plakophilin 2 cardiomyopathy

    Get PDF
    PURPOSE: The genetic architecture of Plakophilin 2 (PKP2) cardiomyopathy can inform our understanding of its variant pathogenicity and protein function. METHODS: We assess the gene-wide and regional association of truncating and missense variants in PKP2 with arrhythmogenic cardiomyopathy (ACM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) specifically. A discovery data set compares genetic testing requisitions to gnomAD. Validation is performed in a rigorously phenotyped definite ARVC cohort and non-ACM individuals in the Geisinger MyCode cohort. RESULTS: The etiologic fraction (EF) of ACM-related diagnoses from truncating variants in PKP2 is significant (0.85 [0.80,0.88], p < 2 × 10-16), increases for ARVC specifically (EF = 0.96 [0.94,0.97], p < 2 × 10-16), and is highest in definite ARVC versus non-ACM individuals (EF = 1.00 [1.00,1.00], p < 2 × 10-16). Regions of missense variation enriched for ACM probands include known functional domains and the C-terminus, which was not previously known to contain a functional domain. No regional enrichment was identified for truncating variants. CONCLUSION: This multicohort evaluation of the genetic architecture of PKP2 demonstrates the specificity of PKP2 truncating variants for ARVC within the ACM disease spectrum. We identify the PKP2 C-terminus as a potential functional domain and find that truncating variants likely cause disease irrespective of transcript position

    The genetic architecture of Plakophilin 2 cardiomyopathy

    Get PDF
    PURPOSE: The genetic architecture of Plakophilin 2 (PKP2) cardiomyopathy can inform our understanding of its variant pathogenicity and protein function. METHODS: We assess the gene-wide and regional association of truncating and missense variants in PKP2 with arrhythmogenic cardiomyopathy (ACM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) specifically. A discovery data set compares genetic testing requisitions to gnomAD. Validation is performed in a rigorously phenotyped definite ARVC cohort and non-ACM individuals in the Geisinger MyCode cohort. RESULTS: The etiologic fraction (EF) of ACM-related diagnoses from truncating variants in PKP2 is significant (0.85 [0.80,0.88], p < 2 × 10-16), increases for ARVC specifically (EF = 0.96 [0.94,0.97], p < 2 × 10-16), and is highest in definite ARVC versus non-ACM individuals (EF = 1.00 [1.00,1.00], p < 2 × 10-16). Regions of missense variation enriched for ACM probands include known functional domains and the C-terminus, which was not previously known to contain a functional domain. No regional enrichment was identified for truncating variants. CONCLUSION: This multicohort evaluation of the genetic architecture of PKP2 demonstrates the specificity of PKP2 truncating variants for ARVC within the ACM disease spectrum. We identify the PKP2 C-terminus as a potential functional domain and find that truncating variants likely cause disease irrespective of transcript position

    Sudden Cardiac Death Prediction in Arrhythmogenic Right Ventricular Cardiomyopathy: A Multinational Collaboration.

    Get PDF
    BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with ventricular arrhythmias (VA) and sudden cardiac death (SCD). A model was recently developed to predict incident sustained VA in patients with ARVC. However, since this outcome may overestimate the risk for SCD, we aimed to specifically predict life-threatening VA (LTVA) as a closer surrogate for SCD. METHODS: We assembled a retrospective cohort of definite ARVC cases from 15 centers in North America and Europe. Association of 8 prespecified clinical predictors with LTVA (SCD, aborted SCD, sustained, or implantable cardioverter-defibrillator treated ventricular tachycardia >250 beats per minute) in follow-up was assessed by Cox regression with backward selection. Candidate variables included age, sex, prior sustained VA (≥30s, hemodynamically unstable, or implantable cardioverter-defibrillator treated ventricular tachycardia; or aborted SCD), syncope, 24-hour premature ventricular complexes count, the number of anterior and inferior leads with T-wave inversion, left and right ventricular ejection fraction. The resulting model was internally validated using bootstrapping. RESULTS: A total of 864 patients with definite ARVC (40±16 years; 53% male) were included. Over 5.75 years (interquartile range, 2.77-10.58) of follow-up, 93 (10.8%) patients experienced LTVA including 15 with SCD/aborted SCD (1.7%). Of the 8 prespecified clinical predictors, only 4 (younger age, male sex, premature ventricular complex count, and number of leads with T-wave inversion) were associated with LTVA. Notably, prior sustained VA did not predict subsequent LTVA (P=0.850). A model including only these 4 predictors had an optimism-corrected C-index of 0.74 (95% CI, 0.69-0.80) and calibration slope of 0.95 (95% CI, 0.94-0.98) indicating minimal over-optimism. CONCLUSIONS: LTVA events in patients with ARVC can be predicted by a novel simple prediction model using only 4 clinical predictors. Prior sustained VA and the extent of functional heart disease are not associated with subsequent LTVA events

    A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    Aims Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC) is characterized by ventricular arrhythmias (VAs) and sudden cardiac death (SCD). We aimed to develop a model for individualized prediction of incident VA/SCD in ARVC patients. Methods and results Five hundred and twenty-eight patients with a definite diagnosis and no history of sustained VAs/SCD at baseline, aged 38.2 ± 15.5 years, 44.7% male, were enrolled from five registries in North America and Europe. Over 4.83 (interquartile range 2.44–9.33) years of follow-up, 146 (27.7%) experienced sustained VA, defined as SCD, aborted SCD, sustained ventricular tachycardia, or appropriate implantable cardioverter-defibrillator (ICD) therapy. A prediction model estimating annual VA risk was developed using Cox regression with internal validation. Eight potential predictors were pre-specified: age, sex, cardiac syncope in the prior 6 months, non-sustained ventricular tachycardia, number of premature ventricular complexes in 24 h, number of leads with T-wave inversion, and right and left ventricular ejection fractions (LVEFs). All except LVEF were retained in the final model. The model accurately distinguished patients with and without events, with an optimism-corrected C-index of 0.77 [95% confidence interval (CI) 0.73–0.81] and minimal over-optimism [calibration slope of 0.93 (95% CI 0.92–0.95)]. By decision curve analysis, the clinical benefit of the model was superior to a current consensus-based ICD placement algorithm with a 20.6% reduction of ICD placements with the same proportion of protected patients (P < 0.001). Conclusion Using the largest cohort of patients with ARVC and no prior VA, a prediction model using readily available clinical parameters was devised to estimate VA risk and guide decisions regarding primary prevention ICD

    A Systematic Analysis of the Clinical Outcome Associated with Multiple Reclassified Desmosomal Gene Variants in Arrhythmogenic Right Ventricular Cardiomyopathy Patients

    Get PDF
    The presence of multiple pathogenic variants in desmosomal genes (DSC2, DSG2, DSP, JUP, and PKP2) in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) has been linked to a severe phenotype. However, the pathogenicity of variants is reclassified frequently, which may result in a changed clinical risk prediction. Here, we present the collection, reclassification, and clinical outcome correlation for the largest series of ARVC patients carrying multiple desmosomal pathogenic variants to date (n = 331). After reclassification, only 29% of patients remained carriers of two (likely) pathogenic variants. They reached the composite endpoint (ventricular arrhythmias, heart failure, and death) significantly earlier than patients with one or no remaining reclassified variant (hazard ratios of 1.9 and 1.8, respectively). Periodic reclassification of variants contributes to more accurate risk stratification and subsequent clinical management strategy. [Figure not available: see fulltext.]

    Anti-desmoglein2 autoantibodies are present in patients with cardiac sarcoidosis and correlate with cardiac inflammation

    Get PDF
    Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): The Zurich ACM Program is supported by generous grants from the Georg and Bertha Schwyzer-Winniker Foundation, the Baugarten Foundation, Swiss National Science Foundation, Swiss Heart Foundation and Wild Foundation. This work is also supported by a Canadian Institutes of Health Research grant (FRN: 162402) and the Labatt Heart Centre and Waugh Family Innovation Funds, Caitlin Elizabeth Morris Memorial Fund, Alex Corrance Memorial Foundation and Meredith Cartwright. BACKGROUND Arrhythmogenic right ventricular cardiomyopathy (ARVC) has several phenocopies such as cardiac sarcoidosis (CS), idiopathic outflow tract ventricular tachycardia (OT-VT) and myocarditis. Differentiation between these entities can be challenging. Recently, we have identified diagnostic anti-desmoglein-2 autoantibodies (anti-DSG2 Abs) in patients with ARVC. PURPOSE We sought to examine whether anti-DSG2 Abs are also present in clinical phenocopies of ARVC. METHODS Anti-DSG2 Abs in sera of 25, 19 and 22 patients with sarcoidosis, OT-VT and myocarditis, respectively, were assessed by western blots and ELISA. Clinical and imaging parameters, as well as conventional biomarkers were correlated to detected anti-DSG2 Ab intensity levels. RESULTS Anti-DSG2 Abs, at various intensities, were identified in 6/25 (24%) patients with sarcoidosis, all presenting with CS, but were absent in patients with OT-VT and myocarditis. Cardiac 18F- fluorodeoxyglucose positron emission tomography (18F-FDG PET) was positive in all sarcoidosis patients with positive anti-DSG2 Abs, corresponding to a median PET maximum standardized uptake value (SUVmax) of 5.65 [IQR: 5.15 – 10.9]. In sarcoidosis patients without anti-DSG2 Abs, the SUVmax values were significantly lower with a median of 0 [IQR: 0 – 4] (p = 0.011). The Pearson correlation coefficient (R) was 0.188 (p = 0.039) indicating a positive correlation between cardiac 18F-FDG uptake and anti-DSG2 Abs. No significant correlation was detected for any of the other clinical parameters and biomarkers. CONCLUSIONS In addition to being present in ARVC, anti-DSG2 Abs are also found in CS, a common phenocopy of ARVC; conversely, anti-DSG2 Abs are absent in idiopathic OT-VT and myocarditis. Anti-DSG2 Ab levels positively correlate with myocardial disease activity in CS as indicated by cardiac 18F-FDG PET scanning. Abstract Figure. Central illustratio

    Risk score for the exclusion of arrhythmic events in arrhythmogenic right ventricular cardiomyopathy at first presentation.

    No full text
    AIMS: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetically determined heart muscle disorder associated with an increased risk of life-threatening arrhythmias in some patients. Risk stratification remains challenging. Therefore, we sought a non-invasive, easily applicable risk score to predict sustained ventricular arrhythmias in these patients. METHODS: Cohort of Patients who fulfilled the 2010 ARVC task force criteria were consecutively recruited. Detailed clinical data were collected at baseline and during follow up. The clinical endpoint was a composite of recurrent sustained ventricular arrhythmias and hospitalization due to ventricular arrhythmias. Multivariable logistic regression was used to develop models to predict the arrhythmic risk. A cohort including patients from other registries in UK, Canada and Switzerland was used as a validation population. RESULTS: One hundred and thirty-five patients were included of whom 35 patients (31.9%) reached the endpoint. A model consisting of filtered QRS duration on signal-averaged ECG, non-sustained VT (NSVT) on 24 h-ECG, and absence of negative T waves in lead aVR on 12‑lead surface ECG was able to predict arrhythmic events with a sensitivity of 81.8%, specificity of 84.0% and a negative predictive value of 95.5% at the first presentation of the disease. This risk score was validated in international ARVC registry patients. CONCLUSION: A risk score consisting of a filtered QRS duration ≥117 ms, presence of NSVT on 24 h-ECG and absence of negative T waves in lead aVR was able to predict arrhythmic events at first presentation of the disease
    corecore