148 research outputs found

    A Model Reference Adaptive Re-Entry Flight Control System

    Get PDF
    The pitch plane equations of motion of a rigid body maneuvering ballistic re-entry vehicle are reviewed. A quasi-linear analysis of these equations is made about a nominal re-entry trajectory. It is demonstrated that in a large number of cases constant gain compensation for the flight control system will not be satisfactory due primarily to variations in dynamic pressure and static margin. A brief review of the adaptive concept is presented. It is shown that a model reference adaptive feedback system which has lift acceleration as the controlled variable and pitch rate as a stabilizing feedback is capable of handling the re-entry control problem. Current research involving fast identification techniques is described

    Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro

    Get PDF
    Vascular calcification, which contributes to cardiovascular disease in patients with uremic hyperphosphatemia, is associated with vascular cell expression of osteogenic genes, including bone morphogenetic protein (BMP)-2 and osteopontin (OPN). High inorganic phosphate levels in vitro stimulate the osteogenic conversion of smooth muscle cells; however, the mechanism governing this is not clear. We found that high-phosphate medium increased the expression of BMP-2 and OPN in mouse smooth muscle cells in culture. However, this effect was lost in the presence of the mineralization inhibitor, pyrophosphate, suggesting a contribution of calcium phosphate crystals. Addition of 1–2 mmol/l phosphate alone to growth medium was sufficient to induce nanosized crystals after 1 day at 37 °C. Isolated crystals were about 160 nm in diameter and had a calcium to phosphate ratio of 1.35, consistent with the hydroxyapatite precursor octacalcium phosphate. Nanocrystal formation increased fourfold in the absence of serum, was blocked by fetuin-A, and was dependent on time and on the concentrations of phosphate and calcium. Purified synthetic hydroxyapatite nanocrystals and isolated high-phosphate-induced nanocrystals, but not nanocrystal-free high-phosphate medium, also induced BMP-2 and OPN. Thus, our results suggest that BMP-2 and OPN are induced by calcium phosphate nanocrystals, rather than soluble phosphate. This mechanism may contribute, in part, to hyperphosphatemia-related vascular cell differentiation and calcification

    From the vulnerable plaque to the vulnerable patient: Current concepts in atherosclerosis

    Get PDF
    Cardiovascular disease affects a significant proportion of the population with global prevalence of 6081 per 100,000 (Virani et al., 2020). Most core risk factors are well characterized and can be controlled with interventions, also meaning it is possible to identify most people at increased risk of acute events, defined as a 10 year risk of events of >20% . However, the real world occurrence of events in this at risk population is relatively low suggesting there is still much to be learnt or identified in spotting the vulnerable patient harbouring vulnerable atherosclerotic plaque at the earliest possible time.British Heart Foundatio

    MHC class II-restricted antigen presentation by plasmacytoid dendritic cells drives proatherogenic T cell immunity

    Get PDF
    Background—Plasmacytoid dendritic cells (pDCs) bridge innate and adaptive immune responses and are important regulators of immuno-inflammatory diseases. However, their role in atherosclerosis remains elusive. Methods and Results—Here, we used genetic approaches to investigate the role of pDCs in atherosclerosis. Selective pDC deficiency in vivo was achieved using CD11c-Cre × Tcf4–/flox bone marrow transplanted into Ldlr–/– mice. Compared with control Ldlr–/– chimeric mice, CD11c-Cre × Tcf4–/flox mice had reduced atherosclerosis levels. To begin to understand the mechanisms by which pDCs regulate atherosclerosis, we studied chimeric Ldlr–/– mice with selective MHCII deficiency on pDCs. Significantly, these mice also developed reduced atherosclerosis compared with controls without reductions in pDC numbers or changes in conventional DCs. MHCII-deficient pDCs showed defective stimulation of apolipoprotein B100–specific CD4+ T cells in response to native low-density lipoprotein, whereas production of interferon-α was not affected. Finally, the atheroprotective effect of selective MHCII deficiency in pDCs was associated with significant reductions of proatherogenic T cell–derived interferon-γ and lesional T cell infiltration, and was abrogated in CD4+ T cell–depleted animals. Conclusions—This study supports a proatherogenic role for pDCs in murine atherosclerosis and identifies a critical role for MHCII-restricted antigen presentation by pDCs in driving proatherogenic T cell immunity

    Myocardin regulates vascular smooth muscle cell inflammatory activation and disease.

    Get PDF
    OBJECTIVE: Atherosclerosis, the cause of 50% of deaths in westernized societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local proinflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. APPROACH AND RESULTS: We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic apolipoprotein E(-/-) mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines, and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis, and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. CONCLUSIONS: We propose myocardin as a guardian of the contractile, noninflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease.This work was supported by Wellcome Trust funding for MAJ (Studentship 086799/Z/08/Z), British Heart Foundation grants (PG/10/007/28184) for AT, and (RG/08/009/25841) for MRB, and SS (FS/13/29/30024), the Cambridge NIHR Biomedical Research Centre and the NIH for JM (NIH HL-117907).This is the accepted manuscript of a paper published in Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, doi: 10.1161/ATVBAHA.114.30521
    • …
    corecore