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Abstract 

The development of atherosclerosis is the major etiological factor causing cardiovascular disease and 

constitutes a lipid-induced, chronic inflammatory and autoimmune disease of the large arteries. A 

long standing view of the protective role of B cells in atherosclerosis has been challenged by recent 

studies using B cell depletion in animal models. Whereas complete B cell deficiency increases 

atherosclerosis, depletion of B2 but not B1 cells reduces atherosclerosis. This has led to a re-

evaluation of the multiple potential pathways by which B cells can regulate atherosclerosis, and the 

apparent opposing roles of B1 and B2 cells. B cells, in addition to having the unique ability to 

produce antibodies, are now recognized to play a number of important roles in the immune system, 

including cytokine production and direct regulation of T cell responses. This review summarises 

current knowledge on B cell subsets and functions, and how these could distinctly influence 

atherosclerosis development.  

  



Introduction 

Cardiovascular disease remains a leading cause of death in the developed world and is growing in 

prominence worldwide, with 80% of cardiovascular deaths now occurring in low-middle income 

countries (1). Atherosclerosis constitutes a lipid-induced, chronic inflammatory and autoimmune 

disease of the large arteries (2–5), and is the major underlying cause of heart disease and stroke. 

Control of cholesterol and blood pressure are effective preventive therapies, however further demand 

remains to better target vulnerable, event-inducing plaques, or alternatively reduce development of 

vulnerability. Reducing the associated chronic inflammation sustaining the immune response is an 

important target for scientific and future therapeutic investigation. Despite a long known association 

with atherosclerosis, B cells and antibodies have not always been a research focus. Current 

knowledge from the immunology field defines diverse functions for B cells beyond antibody 

secretion, with multiple subsets playing a role in both innate and adaptive immunity. This, in 

combination with results from mouse models suggesting different types of B cells can enhance as 

well as protect from atherosclerosis, has reignited interest in how these abundant and multifunctional 

cells impact all stages of atherosclerosis development. This review first describes B cell subsets and 

functions, then summarises current views on the potential roles of B cells in atherosclerosis and 

future targets for research that could enable therapeutic targeting. 

B cell subsets and functions 

B cell development and the different B cell subsets characterized are reviewed in detail elsewhere 

(6–8). Broadly, B1 and B2 cells constitute the major 2 groups of B cells and can be considered part 

of the innate and adaptive immune systems, respectively. B2 cells develop in the adult bone marrow 

from hematopoietic stem cells through a well-characterized series of precursor stages (7), whereas at 

least some B1 cells develop in the fetal liver and are self-sustaining in the adult independently of 

HSCs (9,10) (Figure 1A). B cells are primarily found in secondary lymphoid organs (spleen and 

lymph nodes), blood and submucosa of the intestine and lung, but also adipose tissue, aortic 



adventitia and sites of inflammation (11). The primary and unique characteristic of B cells is the 

expression of surface antibody, or B cell receptor, and thus their major function as the source of 

antibody-producing plasma cells. Each B cell clonal lineage develops a unique B cell receptor 

through somatic genome rearrangement of the multi-gene immunoglobulin locus. The binding 

specificity and affinity of the B cell receptor to self or foreign antigen defines the fate of each B cell. 

In the steady state, a system has evolved that provides a repertoire depleted of highly autoreactive 

clones yet robust and diverse enough to target the multitude of potential antigens encountered. Thus, 

multiple checkpoints regulate developing B cells to hone the B cell repertoire through mechanisms 

including receptor editing, anergy and apoptosis (12,13). In addition to antigen, important regulators 

of B cell development and activation include B cell activating factor (BAFF), and a proliferation-

inducing ligand (APRIL) (14). BAFF is essential for B2 cell maturation beyond the Transitional-1 

(T1) stage in the spleen through interaction with BAFF receptor (BAFFR) (15–17). BAFF can also 

regulate survival, activation and function of both B1 and B2 cells through BAFFR and the alternative 

receptor TACI (transmembrane activator and calcium modulator and cyclophilin ligand interactor). 

APRIL is a BAFF homologue but interacts only with TACI and a third receptor BCMA (B cell 

maturation antigen), but not BAFFR. TACI is upregulated in activated B cells and plays complex 

roles in B cell proliferation, survival and antibody class switching (18–20) whereas BCMA is 

upregulated on plasma cells and is essential for plasma cell survival in the bone marrow by 

transducing APRIL signals in the plasma cell niche (21,22). 

B1 cells play a major role in maintaining the barrier function of mucosal surfaces and possess B cell 

receptors with germline-encoded specificities for common pathogen-associated epitopes and rarely 

undergo B cell receptor editing or maturation, thus are as much part of the innate as the adaptive 

immune system. B1 cells are the source of natural antibodies, which are produced independently of 

any external antigens. One major family of these epitopes are oxidation-associated epitopes and 

include phosphorylcholine (PC) and malondialdehyde (MDA) (23). Such epitopes are common in 



endogenous debris such as apoptotic and necrotic cells and modified lipoprotein particles, e.g. 

oxidized low density lipoprotein (oxLDL). Thus, natural antibodies (and other antibodies targeting 

these antibodies) play an important role in homeostatic clearance of dead cells and other debris 

including oxLDL, and may contribute significantly to clearance pathways in atherosclerosis. 

Mature B2 cells recirculate via the blood through secondary lymphoid organs where they may 

encounter antigens captured and displayed by macrophages and dendritic cells, in general as part of 

immune complexes with (presumably) low affinity, natural or previously produced antibodies. 

Depending on other signals and the precise location, B2 cells are then activated and proliferate, 

leading variously to short-lived plasma cells, long-lived plasma cells that migrate to the bone marrow 

and memory B cells that enable life-long immunological memory and more rapid responses upon 

subsequent antigen encounters (24) (Figure 1A). Bone marrow plasma cells can persist for years and 

continue producing antibodies, but re-exposure to the same antigens stimulates memory B cell 

activation and formation of new plasma cells. Marginal zone B2 cells bridge the functions of B1 and 

follicular B2 cells, possessing somatically rearranged B cell receptors but having a memory-like 

phenotype that allows a more rapid B1-like response that can be activated by innate signals like Il-5 

or toll-like receptor ligands. In addition to developmental antibody receptor diversification, mature 

B2 cells selected and activated by the presence of cognate antigen undergo two further changes to 

their B cell receptor (antibody) - class switching of the Fc region and mutagenesis of the antigen 

binding Fab region to enhance affinity. Affinity maturation occurs in proliferating activated B cells 

in the germinal centers (GC) of secondary lymphoid organs where higher affinity clones prevail 

through competition for antigen immobilized on follicular dendritic cells (25). 

Antibodies play a primary effector function in neutralizing and clearing pathogens, pathogen-

associated molecules and infected cells through a range of mechanisms, including antibody-

dependent cellular cytoxicity, recruitment of the complement system  and promoting phagocytosis 



(26–28). Antibodies also influence innate immune function and phenotype, particularly macrophage 

inflammatory activation through the Fc region binding to Fc receptors on the cell surface (26). 

B cells, like most immune cells, produce a range of cytokines with potent and diverse effects. For B 

cells, these include most prominently Il-6, Il-10 and TNF (29). B cells also respond to many 

cytokines including Il-6, TNF, IFN-α, Il-4, Il-5, and IFN-γ. More recently, a distinct subset of spleen 

B cells has been shown to be capable of GM-CSF production and that these cells can significantly 

influence innate immune functions (30). Alternatively, B cell derived MCP-3 (Ccl7) is critical to 

monocyte mobilization in response to myocardial infarction with B cell depletion leading to reduced 

infarct area and improved heart function (31). 

B cells also regulate their adaptive immune counterparts, T cells, through antigen presentation and 

co-stimulation (32). In general, B cells are not phagocytic like myeloid antigen presenting cells, and 

only antigen endocytosed while bound to the B cell receptor (surface antibody) is processed and 

presented on B cell MHCII molecules to helper CD4+ T cells. Although dendritic cells act as 

primary activators of helper T cells, in many cases B cell – helper T cell interactions are critical in 

sustaining and regulating the nature of both T cell and B cell responses, for example in response to 

lower antigen levels (33). 

Not all B cells require the presence of cognate antigen or the presence of helper T cells for their 

activation and differentiation into plasma cells. B1 cells and certain B2 cell subsets, such as marginal 

zone B cells, can be activated directly by pathogen-associated molecular patterns, for example toll-

like receptor ligands, or cytokines such as IFN-α, Il-1β and Il-5 (34,35). In contrast, responses to 

protein antigens are commonly T cell dependent and require ongoing contact with antigen, 

costimulation and cytokines; the latter two signals received from specialized follicular helper T cells. 

BAFF and APRIL also play prominent roles in B cell activation in addition to being critical to 

homeostatic maintenance (16,17,36). Thus, both innate and adaptive immune pathways could lead to 

B cell activation in atherosclerosis (Figure 1B). 



Association of B cells and autoantibodies with atherosclerosis 

The humoral nature of B cell antibody responses suggests a remote regulation of atherosclerosis is 

most likely and most important. Furthermore, a number of other remote pathways negate a need for 

the presence of B cells within or adjacent to plaques for them to be important. These include T cell 

responses in spleen and lymph node, regulation of innate cell differentiation, monocyte mobilization 

from bone marrow, and their presence at alternative sites of cardiovascular disease-associated 

inflammation such as adipose tissue. Nevertheless, B cells can be found in plaques but are more 

often found at adventitial sites close to plaques (37–39). Initial reports suggested these cells may be 

plasma cells, whereas a recent report concluded that these B cells are most likely B2-derived 

plasmablasts, with evidence of local affinity maturation occurring in both adventitia and plaque, and 

the presence of a limited number of class-switched clones (40). The adventitia is a well-recognised 

site for immune responses (41), and advanced human and mouse atherosclerosis leads to the 

development of tertiary lymphoid organs in the adjacent adventitia (38,42). This suggests a potential 

for local B cell responses in advanced human atherosclerosis and thus ongoing regulation of plaque 

status. Whether adventitial immune responses and cell accumulation also occur in symptomatic 

coronary and carotid plaques is unclear, however it is easy to envisage aorta-originating B cell and T 

cell responses regulating plaques at other sites. Very recently, a study examining whole blood global 

gene co-expression identified a strong indication of B cell dysregulation in coronary heart disease 

patients compared to controls (43) and another showed activated CD86+ B cells associate with a 

higher risk of stroke (44). 

The presence of antibodies within atherosclerotic plaques is much more prominent than B cells 

themselves, with abundant IgM and IgG detected in human and mouse plaques (39,45,46).  

Circulating levels of modified LDL-reactive antibodies also associate with atherosclerosis (47,48), as 

do those to heat shock protein 65 (49). Levels of both natural IgM antibodies and adaptive IgG 

antibodies reacting with moieties found in modified LDL and on apoptotic cells, e.g. phophocholine 



or malondialdehyde, are associated with atherosclerotic burden in many studies, although not all 

(50–52). Interestingly, IgM levels decline with age (53), consistent with studies showing an inverse 

correlation with disease and extensive experimental evidence of its protective influence (46,54). 

Overall, the prevailing view is that anti-oxLDL IgG is positively correlated whereas IgM is 

negatively correlated; however doubt still remains, particularly in the case of IgG. Equally, 

prospective studies have shown mixed results (52). For example, anti-modified LDL antibodies 

predicted myocardial infarction in type II diabetes patients in the VADT study (55), but there was no 

prognostic value in the EPIC-Norfolk study (56). A further impact of B cells on atherosclerosis is the 

association of other autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus 

erthyramatous and Sjorgren’s syndrome (57,58) with an increased risk of cardiovascular disease. 

How the presence of these autoimmune diseases influences cardiovascular disease is complex, but 

cross-reactivity of autoantibodies is one contributory mechanism as well as systemic pro-

inflammatory cytokines that may be induced in part dependently on autoantibodies. In RA, the 

correlation between oxLDL IgG antibodies and atherosclerosis seems more consistent (59–61). 

Recently, in SLE patients, levels of autoantibodies to dsDNA and Cardiolipin were associated with 

higher levels of noncalcified plaques, potentially more prone to rupture (62) and a previously 

unappreciated pro-atherosclerotic role for IgE antibodies was demonstrated in ApoE-/- mice (63). The 

functional roles and overall influence of antibodies in atherosclerosis are further discussed below. 

 

B cells regulate atherosclerosis – Evidence from mouse models 

Given the diverse functions and wide ranging impact of B cells on immune responses, it is 

unsurprising that B cell regulation of atherosclerosis is complex to dissect. Past studies suggesting a 

solely protective role for B cells in atherosclerosis must now be reinterpreted based on the divergent 

roles of different B cell subsets and their antibodies. The increased atherosclerosis in B cell-deficient 

(µMT), atherosclerotic-prone ApoE-/- mice (64) and splenectomized mice (65) could be primarily 



due to the lack of B1 cells and natural IgM (46,54), which plays a prominent role in opsonisation and 

non-inflammatory removal of oxLDL as well as apoptotic cells. In contrast to genetic deficiency of 

all B cells, anti-CD20 antibody treatment, which preferentially depletes B2 cells, leaving B1 cells 

largely intact, reduces atherosclerosis (66,67). Corroborating these studies, the specific lack of 

mature B2 cells in ldlr-/- mice transplanted with B cell activating factor receptor (BAFFR)-deficient 

bone marrow reduces atherosclerosis (68). The same is true for BAFFR-/- mice on the ApoE-/- 

background (69) and B cell-specific BAFFR deficiency (68). Resupplementation of B cell-deficient 

mice with spleen B2 cells reverses the reduction of atherosclerosis (67). However, other groups have 

shown protective effects of transferred spleen B cells (65,70), suggesting as yet unclear complexities 

and multiple potential mechanisms for B2 cell regulation of atherosclerosis. Doran et al (70) showed 

that the ability to home to the aorta through CCL20-CCR6 signaling was key for atheroprotection. It 

is not clear if this property was important to recruit a certain subset or to the localization of B cells in 

general to the adventitia. Further fractionation of B2 (or spleen) subsets, or transfer of B cells from 

appropriate knockout mice, will be necessary to determine these remaining questions. 

 

Mechanisms for B cell regulation of atherosclerosis 

There are 3 major modalities by which B cells could influence atherosclerosis, 1) through antibodies, 

2) through regulation of T cell responses via cell-cell contact, and 3) through production of 

cytokines. These different modalities may act through a variety of pathways and each has both anti- 

and pro- atherogenic potential. 

1) Multiple roles of antibodies in atherosclerosis 

Past studies have provided many useful insights into the potential roles for autoantibodies in 

atherosclerosis. However, the lack of complete discrimination between natural or innate-derived and 

adaptive antibodies, the use of immunization strategies that also stimulate natural antibody and 

regulatory T cell-mediated immune responses (71), and a focus on oxLDL targeting antibodies (72), 



means that the overall influence of B cell antibodies is still unclear. The most recognized and studied 

autoantigen in atherosclerosis is modified LDL, with epitopes from various forms targeted both by 

natural antibodies and B2 cell-derived, class-switched IgG antibodies. Hsp60 and 65, as well as β2 

glycoprotein I, are further autoantigens (73). Passive Ig transfer (intravenous immunoglobulin; IVIg) 

suppresses atherosclerosis (74). IVIg, used in other autoimmune diseases and transplant patients, is 

hypothesised to work through differential sialylation of the Fc portion, leading to 

immunosuppressive pathways via IL-33, Il-4 and induction of macrophage FcRIIb (75) as well as 

through induction of regulatory T cells (76). Although a number of modified LDL or apoB peptide 

based active immunization strategies consistently reduce atherosclerosis (77,78), their effects are 

primarily due to increased regulatory T cell responses, enhanced natural antibody production and a 

shift to Th2 IgG responses, thus may not represent endogenous humoral responses (71,79). Indeed, 

both immunogenic adjuvant-containing (77,78)  and tolerogenic (e.g. mucosal or oral) formulations 

(79,80) lead to enhanced Treg levels and reduced atherosclerosis. In contrast, immunization with 

Hsp65 can enhance atherosclerosis (81–83), whereas tolerogenic strategies targeting Hsp65 reduce 

atherosclerosis (84–86). Immunization against β2-GPI can also enhance atherosclerosis (87). The 

consequences of endogenous antibody responses are far better understood for IgM antibodies than 

IgG and other isotypes, as exemplified by the E06 monoclonal phospholipid-reactive IgM (88). It is 

likely that enhanced clearance of oxLDL, preventing its accumulation in plaque and foam cell 

formation, is a major mechanism for the action of B1 cell derived IgM (89). Interestingly, very 

recent data suggests that excessive IgM accumulation in plaque bound to necrotic and lipid debris 

could in fact be pro-inflammatory (90), emphasising the need for further investigation. A major 

effector pathway for IgG antibodies linked to atherosclerosis are the Fcγ receptors, of which there are 

both pro-inflammatory activating receptors (I, IIa, III and IV) and an inhibitory receptor (IIb) 

(26,91). A pathogenic role for IgG antibodies/immune complexes in atherosclerosis is supported by 

findings that mice lacking activating, pro-inflammatory Fcγ (IgG) receptors have reduced 



atherosclerosis (92,93), whereas mice lacking the inhibitory FcγRIIb have enhanced atherosclerosis 

(94). Immune complexes are known to activate macrophages (95), a central mediator of plaque 

formation via Fc receptors, and oxLDL immune complexes can promote foam cell formation. 

Different IgG isotypes have varying affinities for Fc receptors and thus different activatory capacity, 

for example IgG2a/c (different strains express a or c isoforms) in mice is highly activatory (26). 

IgG2c is mainly induced in association with Th1 type responses such as those which dominate 

atherosclerosis, accordingly anti-oxLDL IgG2c is commonly found in atherosclerotic mice 

(46,66,68,92). In addition, the pathogenic or protective role of the targeted antigen (e.g. oxLDL vs 

heat-shock proteins) could strongly influence the effects of humoral responses against it, i.e. 

targeting the clearly pro-atherogenic oxLDL autoantigen may well be protective, whereas 

endogenous responses to distinct autoantigens may in contrast be pathogenic. Thus, the 

consequences of endogenous IgG responses in atherosclerosis remain ill-defined and methods to 

specifically target them must be developed to improve our understanding. 

2) B cell regulation of atherogenic T cells 

Results from B2 cell depletion models (66–68) support a role for B2 cell potentiation of pro-

atherogneic CD4+ T cell effector responses. Each of these studies was associated with significantly 

reduced numbers of T cells in plaques as well as systemic decreases in pro-atherosclerotic IFN-γ 

producing T cells, whereas complete B cell deficiency results in enhanced plaque T cell levels (65). 

These B cell-deficient (µMT) mice have defective Th2 (Il-4) differentiation capacity due to an effect 

on DCs (96), which may partly be due to lack of antibody-mediated uptake and lysosomal targeting 

(97). B cell depletion therapy is also effective in reducing other T cell dependent chronic diseases 

such as multiple sclerosis and rheumatoid arthritis (reviewed in (98)). Conventional CD11chi 

dendritic cells are now recognised as the primary and non-redundant antigen presenting cells 

activating, as well as maintaining, naïve T cells. However, macrophages and B cells can also play 

prominent roles in presenting antigen to effector T cells and influencing the nature (Th1, Th2, Th17, 



Treg), power and longevity of effector T cell responses (98). It has not yet been investigated whether 

MHCII-mediated antigen presentation by B cells is important for their stimulation of pro-atherogenic 

CD4+ T cell responses. Co-stimulatory molecules such as CD40 and OX40, or cytokines like TNF or 

IL-6 are also likely candidates for future investigation. A recent study investigating RP105, a TLR 

receptor regulator, also supports an important role for TLR-mediated regulation of B cells in 

atherosclerosis (99). 

3) B cell-derived cytokines and atherosclerosis 

Kyaw et al (67) showed that transferred B2 cells promoted atherosclerosis in T cell (and B cell) 

deficient RAG2-/-/ApoE-/- mice, although to a lesser extent than in T cell-sufficient mice. This 

suggests there are both T cell dependent and independent mechanisms involved. Beyond antibodies, 

B cells are now recognised to modulate immune responses, particularly those initiating in the spleen, 

through cytokines. For example, B cells are a major source of MCP-3 (Ccl7) in response to 

myocardial infarction and promote heart injury through monocyte mobilization into the infarct site 

(31). Although not yet investigated in atherosclerosis, GM-CSF+ B cells, also characterized as B1-

like plasmablasts resident in the spleen marginal zone, could potentially play an important role in 

atherosclerosis. In contrast to these potentially pro-atherogenic B cells, Il-10 producing B cells are 

likely protective. Although rare ‘regulatory’ B cell subsets characterized by high CD1d, CD19 and 

CD5 expression are important IL-10 producers (also called B10 cells) (32), other groups suggest that 

more common B cell subsets including marginal zone and B1 cells may potentially produce IL-10 

given the correct environmental stimuli, such as TLR ligands (35). Indeed, switching B cells between 

Il-10 and Il-6 production is associated with functional regulation of experimental autoimmune 

encephalomyelitis (EAE), a model of multiple sclerosis (29). B cells are also reported to express 

further cytokines such as TNF, which may be important in regulating T cell responses (100). Thus B 

cell cytokine-mediated regulation of atherosclerosis merits further attention in future studies. 

Conclusion 



The characterization of heterogeneity within B cells has led to a better appreciation that B cells can 

play multiple roles in atherosclerosis, with different subsets playing potentially opposing roles. 

Recent studies in mice have revealed the source of B cell protective immunity as primarily IgM, 

strongly supported by numerous clinical studies assessing human circulating anti-oxLDL IgM levels, 

whereas despite multiple lines of indirect evidence, the jury is still out on the functional roles of IgG 

and the nature of pro-atherogenic B cell immunity. Current research is focused on determining 

through which of the distinct functional pathways B cells regulate atherosclerosis development and 

whether these can be translated into therapeutic strategies. An important question will be how closely 

the roles of murine B cell subsets match their human counterparts, given various differences in cell 

and antibody isotype subsets. Therapeutically, the BAFF/APRIL system may be a fruitful area of 

research; establishing their role in endogenous atherosclerotic B cell (and potentially other immune 

cell) responses could be important in both understanding the underlying causes and mechanisms, and 

in therapeutic interventions, since a number of BAFF and APRIL targeting monoclonal antibodies 

have been developed and are already in clinical trials for cancer and autoimmune diseases. This is 

further supported by data showing upregulated BAFF and APRIL in human plaques (101) and the 

association of increased BAFF with myocardial infarction (31). 
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Figure Legend 

A. B cell development and subsets. B1 cells develop primarily from fetal liver and self-maintain 

in the adult. B1 cells are the source of natural IgM antibodies that target antigens such as oxidized 

phospholipids. B2 cells develop from adult bone marrow stem cells and undergo a series of 

differentiation steps in the bone marrow, then leave as immature/transitional B cells and further 

differentiate into either marginal zone or follicular B cells in the spleen. B2 cell activation leads to 

short-lived plasma cell differentiation or, in the case of T cell dependent responses, germinal centre 

formation, which results in affinity maturation of the B cell clone and formation of memory B cells 

and long-lived plasma cells, which can persist in specific bone marrow niches until ntigen 

reencounter. B. B cell regulation of atherosclerosis. Natural antibodies and other IgM targeting 

oxLDL, primarily but not exclusively from B1 cells, is thought to be atheroprotective. The potential 

pro-atherogenic functions of B2 cells include production of IgG2 antibodies that activate 

macrophages via Fc receptors, activation of pro-atherogenic Th1 CD4 T cells, or production of pro-

inflammatory T cells. B cells may act remotely from peripheral lymphoid organs or locally from the 

adventitia and atherosclerotic plaque.  
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