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A MODEL REFERENCE ADAPTIVE RE-ENTRY FLIGHT CONTROL SYSTEM

Andrew P. Sage
Professor of Electrical Engineering

University of Florida
Gainesvi1le,Florida

SUMMARY

The pitch plane equations of motion of a rigid body maneu 
vering ballistic re-entry vehicle are reviewed. A quasi-linear 
analysis of these equations is made about a nominal re-entry 
trajectory. It is demonstrated that in a large number of cases 
constant gain compensation for the flight control system will 
not be satisfactory due primarily to variations in dynamic pres 
sure and static margin. A brief review of the adaptive concept 
is presented. It is shown that a model reference adaptive feed 
back system which has lift acceleration as the controlled varia 
ble and pitch rate as a stabilizing feedback is capable of hand 
ling the re-entry control problem. Current research involving 
fast identification techniques is described.
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RE-ENTRY DYNAMICS

In any discussion of re-entry flight control, it is necessary to deal with 

equations of motion of the re-entry vehicle. Solution of these equations yields 

range and velocity state variables as a function of initial entry states and ve 

hicle coefficient matrix. The guidance and control system for a re-entry vehicle 

is designed such that a correct trade-off is achieved between range and velocity 

state variables and physical constraints; such as, maximum acceleration, heating 

rate, and heat absorbtion.

For the purposes of this paper, it will be sufficient to employ a three-de 

gree of freedom model (longitudinal dynamics) in which velocity and altitude and 

hence dynamic pressure are allowed to vary. This model, commonly called a pitch 

plane model is a special case of the much more complicated six-degree of freedom 

model which in general can be analyzed only with the aid of a computer. The peri 

pheral velocity of the earth is assumed to be negligible compared to the velocity 

of the re-entry vehicle. Variation of altitude during the re-entry flight is as 

sumed negligible compared to the radius of the earth. Thus, gravitational accel 

eration is assumed constant. Figure 1 gives the geometry of the pitch plane model 

and Table 1 defines the symbols used.

Newton's second law for the motion of the center of mass of a rigid body of

constant mass gives ,-»i? dv
F = m dt (1)

using the i, j axes in Figure 1; equation 1 becomes

m dt" = m dt ^* m V dt" = " (D + W Sin T) ' + (L " W COS T) ^ ^ 2)

But ;rr = nf - TTU
dt Idt

* i and j cc 
rate equation

1 y K * *

Separating the i and j components of equations 2 and 3 and using the range angle

d|L = V
dt h + r e

and the near earth circular satellite velocity equation

v* = g(h + r )
gives

\Drag Forces —= — -gsinT (6) 
/ dt m

2.1ft Forces V ^= ~ - 9 
dt m [ Vs

cos T (7)

In addition, we can write the pitching moment equation

22 M 2
d *~f\ i^-O r\ T • • _i*"C:

,_._ ,_ M ^ _0 d B P T . x d o
'itch Moments —^ " —jf = T~" + T" T~ —5"

dt dt y Y Y dt

Other equations describing the re-entry vehicle model are

Altitude Rate -rr = V sin T (9)
dt
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Lift Force L = y- AC (a, 6) -10-

2
Drag Force D= 2 ACD (a > 5) " n "

2 
Pitch Torque P = £|- AC C (a, 5) -12-

Range R = 6 re -13-

e-BAh 
Dens i ty p = p -14-

Angle of Attack a = 6 - r * -15- 

To describe the control forces, we have reaction jet control

T = T. (a, A, 0, 0) -16-

and flap control 6 = 6 f (a, a, 6, 0, h, h, V, V) -17-

C. and C are characteristic of a given vehicle. Equations of Newtonian hy
personic flow can be used to obtain a relationship between C and C as well as L/D 
and a. The maximum lift to drag ratio (L/D) maximum is an important: desian para 
meter since it is a measure of the maximum range of a re-entry vehicle.J'^ The New 
tonian formulae for a lifting body configuration (without flaps) are \^-'

C D '
sin

-18-

C = C cos a sin a sin a -19- 
o '

Q.uite often polynomial approximations to the hypersonic flow equations are used. 
These are, of course, quite valid for reasonably small angles of attack. Two 
commonly used approximations are

C D * C D + C D, *2 -2°-
o L

C L « C[ a -21- 
o

Figure 2 shows typical variations of C , C , and L/D with angle of attack.

The pitching moment equation is predominantly a function of the vehicle char 
acteristics. For small angles of attack and flap deflection, the pitching moment 
is normally linear as a function of angle of attack and flap deflection.

Considerable insight into the re-entry control problem can be obtained by 
studying the case of zero lift or ballistic entry. In almost all cases, it is 
reasonable to neglect the gravitational acceleration compared to the other ac 
celeration terms present. In this case it is apparent from equation 7 that

£ • o
or T = constant = YV
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thus, in the absence of gravity the re-entry vehicle will enter with a constant 
flight path angle. Equation 6 yields

r I dV zi = 1 PV2
g dt mg 2 W ~^~

CDA

Where G is the acceleration expressed in terms of g. G is also directly proportion 
al to the dynamic pressure , ~

q = PVZ -2k-

By combining equations 23, 9, and 1^ we obtain

dV _ q V
dp 2B n W A

-25-

which yields when integrated from entry where p is essentially zero and V is equal
V

V - V e ————— r ———————— _26 _
to V up to some velocity V

The expression for maximum acceleration can be found by maximizing G in 
equation 23. The result of this yields the velocity at maximum acceleration

V = Vre ~ 1/2 -27- 
m t

the atmospheric pressure at maximum acceleration

~28~
and the maximum acceleration 2

6 V s i n Y
G = A 9 E—————- -29- 
m 2 ge

which occur at the altitude for maximum acceleration

- -30-

A typical ballistic re-entry trajectory is shown in Figure 3. Figure k shows 
typical maximum acceleration (and dynamic pressure) as a function of entry 
angle for a ballistic entry and for a trajectory with a constant L/D = 2.

RE-ENTRY FLIGHT PATH CONTROL

The basic functions of the re-entry flight path control system are the same 
as those for the launch vehicle flight control system during boost. However, the 
severe elastic bending problems which occur during boost are normally not present 
or are certainly less severe in re-entry. The static margin and degree of sta 
bility will undergo rapid variations during re-entry due to the huge variation in 
dynamic pressure and possible thermal deformation of the re-entry body. The func 
tion of the re-entry flight path control system is to accept guidance and steering 
commands, perform them satisfactorily and maintain an acceptable degree of atti-
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tude stability. The flight control system must be designed such that system par- 
meters may be adjusted as required and with sufficient speed to provide acceptable 
performance without requiring a priori vehicle characteristic knowledge of greater 
accuracy than can normally be obtained. In many cases, this will require an adap 
tive control system for rigid body control during the re-entry phase of flight.

A first step in the design of the flight control system is the selection of 
controlled variables. Generally this selection is determined by 1.) the nature 
of the physical constraints on the system during re-entry; 2.) the guidance and 
control interface; i.e., the controlled variable should be capable of reasonably 
simple generation by the guidance system; 3-) the ease of measuring or computing 
the control state variable. On this basis, the two most logical choices for con 
trolled variables would appear to be angle of attack and lift acceleration. For 
the purposes of this paper, lift acceleration will be used as the control variable. 
Either body referenced, or inertia!ly referenced acceleration, may be sensed in 
order to obtain lift acceleration.

Since the magnitude of sensible acceleration is low during the initial phase 
of entry, it cannot be used entirely as the controlled variable. A reaction jet 
system, similar to that used for on orbit control, will be used to control the ve 
hicle during initial entry. Command signal limiting may be used to limit maximum 
acceleration. Since heating is proportional to the angle of attack, this will pro 
vide some measure of heating control as well.

In the design of the flight control system it is convenient to assume a flat 
earth with gravity negligible compared to the aerodynamic forces. Aerodynamic co 
efficients are assumed to be independent of Mach number, and the drag coefficient 
is assumed to be independent of flap deflection. In addition, a pitch reaction 
jet system is assumed as a source of control moment. The lift and pitching moment 
coefficients are linearized, and the drag coefficient is made parabolic. The ap 
proximations used are

C, (a, 6) = c, a + C, 5

'«• 5> - CM a + CM 
Ma M8

CD (a) = C D + CD ^ 
o cc

-31-

-32-

-33-

where a and 5 are in radians.

For constant dynamic pressure and velocity, Equations 7, 8, and 15 are linear 
and describe the rotational behavior of the vehicle in the pitch plane.

„ A r A . a + C c,o + - — + - —MX 
I

d2 5

y u y y dt

T = 0 - & 

These equations can be represented in block diagram form as shown in Figure 5-

-34-

-35-

-36-
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be neglected. This 
re-entry equations

|6 -39-

s impl 5 - 
can then

be represented in block diagram form as shown in Figure 6. Pertinent transmission 
functions are now

(s + qA C. /mV) [(qAc/l ) C R6 + (//I )]T
e = ———_L«——————y—D]5————y— , _40 _

s + (qA CLa/mV) s-qAcC /ly

(qAc C R/l ) S + (//I ) T 
„ _ mS yy y x ,.,_.

s + (qA C La/mV) s-qAcC^/ly

A L = f C laa (C l5 =Mx=0) -42-

If C is positive, the system is unstable. It is relatively easy to show
that the re-entry autopilot has unacceptably low damping for both the high q and
low q cases if C is negative. Stability can be provided by pitch rate feedback
alone if C is negative.

For the low q case, the reaction jet provides the control moment to increase 
damping since pitch flaps are ineffective. Normally thrust can be made directly 
proportional to pitch rate in order to achieve reasonable damping at low q under 
nominal conditions.

For high q flight, the moment obtained from the reaction jet system is in 
adequate and the pitch flap must be used to obtain satisfactory stability. Since 
large values of vehicle natural frequency are encountered at high dynamic pressures, 
the dynamics of the flap actuator must be considered. The control surface hydraulic 
system will typically have the block diagram shown in Figure 7- '" The transfer 
function of the servo valve is to a very close approximation.

-43-&a
Se " 2 s

u 2 
r

K2

2C rs^^ +1 
r

The transfer function of the actuator and backup structure can be assumed to be
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5 K2
Sa 

S s 2i as
2 u

u a a

Typical numerical values for the parameters depend upon vehicle size. A not 
untypical set of parameter values might be

K ] K2 = 100 C, v = .5 ^ = .05

u = 500 u = 650 
r f\

which gives a closed loop hydraulic system transfer function

6 _ _______]______________
1 2$ ,S \ / r 2 2<r~St*0( S_ *T , , , , ~_ , __^_ ^ , —2 + IT— + 1M —— + — + 1

where w, = 119 ^>, = .326 V. = .106

(j^ = 480 (J = 610

It therefore appears possible to represent the hydraulic flap actuation sys 
tem as a simple lag. This must be done with great caution, however, because of the 
other four poles - two with very low damping. A constant gain in the pitch rate- 
flap control loop can be adjusted by conventional root locus, Bode diagram, or 
Nichol's chart techniques to achieve satisfactory response at one point - possibly 
maximum dynamic pressure.

In order to have zero steady state lift acceleration error for a constant lift 
acceleration command, it is necessary to incorporate an integration in the transfer 
function between lift acceleration and error to a lift acceleration command. The 
simplest type of fixed compensation which will give satisfactory stability augmen 
tation appears to be proportional plus integral compensation. The resultant linear 
ized block diagram of the qualitatively compensated system is illustrated in Figure 
8.

For nominal values of system parameters (negative C ) the values of the com 
pensation parameters K , T K~ and K^& can be adjusted such that the system is 
sufficiently stable throughout the expected flight trajectory.

Typical Bode diagrams of the (A./Error) transfer function are shown in Figure 
9- From this figure the phase margin for various flight conditions can be computed. 
It would thus appear that constant gain compensation has satisfactorily solved the 
flight control system design problem as long as conditions remain at the nominal 
values.

Closed loop acceleration response is a function of velocity V, dynamic pres 
sure q, and the stability derivative C . The effects of C.~, M , and the more com 
plicated hydraulic system will have tooe incorporated into the design to determine 
whether these terms affect the selected values of compensation parameters. Also, 
uncertainties in vehicle parameters, particularly the stability derivative C , 
will have to be investigated in order to determine whether the constant gain auto 
pilot is really satisfactory. The selected values of compensation parameters will 
have to be altered due to the effects of C. & , M , and the low damped poles in the
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hydraulic system. The addition of these terms plus uncertainties in vehicle char 
acteristics may well make it impossible to design a constant gain autopilot.

Table 2 shows some of the results of a digital computer study of conventional 
compensation of a high L/D re-entry vehicle. The table shows the closed loop pole 
zero locations for three cases of re-entry along a ballistic trajectory.

1. First order hydraulics, M = C ~ = 0, 1.5% stable static margin.
X LO

2. First order hydraulics, M = C ~ = 0, 1.5% unstable static margin.

3- Fifth order hydraulics, representative M and C.~, 1.5% stable static 
margin.

In cases 1 and 2, the values of K and T are constant and were adjusted 
such as to obtain what appeared to be the "most reasonable" response possible. For 
case 3 the values of K and T were adjusted to provide a reasonable response for 
that case. This required a 25% reduction in T . and a kO% reduction in the pitch 
rate gain. Inspection of this table shows that non-adaptive compensation of the 
re-entry flight control system will be extremely difficult, if not impossible. 
Whether this statement will be true in general will of course depend upon many 
factors not considered here. Among these factors are the particular vehicle para 
meters used and the type of nominal trajectory (or predictively controlled trajec 
tory) flown by the re-entry vehicle.

In order to demonstrate feasibility of a constant gain autopilot, a graph, 
generally multidimensional, of acceptable phase margin versus one or more of the 
compensation parameters and a trajectory parameter such as range and considering 
"worst case" values of all vehicle parameters can be calculated. This will norm 
ally appear as illustrated in Figures 10 and 11. In Figure 10 it is clear that a 
constant value of the parameter K can be used throughout the flight. A direct 
simulation would, or course, be used to verify this assertion. In Figure 11, how 
ever, there is no value of constant gain K that will give satisfactory performance 
throughout the entire trajectory and some form of pre-programmed adaptive or closed 
loop adaptive compensation must be used. The reference models and identification 
technique for the adaptive system will make use of the models of the re-entry flight 
control system discussed in this section.

ADAPTIVE CONTROL SYSTEMS

A wide variety of adaptive control systems have been proposed and studied in 
recent times. It appears that most of these can be included within the following 
three categories [8]. 1.) High gain adaptive systems. 2.) Model Reference Adaptive 
systems. 3.) Optimum Adaptive Systems. It should be noted that these three cate 
gories are not mutually exclusive and that a given system may be described as be 
longing to one or more categories depending upon the particular technique used to 
explain the basic adaptation operations. Various subcategories of each of the above 
are also poss ible.

The purpose of this section will be to present a brief summary of each of the 
above categories of adaptive systems. Particular emphasis will be placed on the 
model reference concepts and fast identification techniques which appear to be ne 
cessary for the re-entry flight control problem and which are under investigation 
currently at the University of Florida.
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HIGH GAIN ADAPTIVE SYSTEMS

One of the most successful types of adaptive control systems in current use 
today is the high gain system such as the type provided by the Minneapolis-Honey- 
Well Company [9] and the General Electric Company [10] for the rocket powered 
X-15 aircraft and other more recent applications. The high gain schemes were first 
proposed to meet the following requirements: (l) Zero steady state error for norm 
al command inputs. (2) Application to a wide range of vehicles without excessive 
redesign and flight testing. (3) Adaptation through the variation of a single para 
meter, (k) Adaptation without the use of external test signals, explicit identifi 
cation or limit cycling.

A schematic diagram of a high gain system is shown in Figure 12. In this high 
gain system, the gain in the feedback loop around the nonstationary process is kept 
as high as possible in order that some closed loop poles of the nonstationary pro 
cess approach the location of model zeros. Since these zeros are in the feedback 
loop, they do not appear in the closed loop transfer function even though they in 
fluence the shape of the root locus. Thus, the dominant closed loop poles are typ 
ically near the model zeros. Monitoring is provided as a check for oscillations 
produced by high gain associated instabilities. Thus, the system is adjusted so 
that its response is kept close to that of a particular model regardless of the 
varying process parameters. A typical root locus is shown in Figure 13 with the 
gain set to produce the pole zero pattern on the root locus indicated by the tri 
angles. The model zeros do not appear in the closed loop transfer function be 
tween input and output since they are in the feedback path.

Needless to say, not all of the original expectations concerning high gain 
adaptive systems have materialized. Nonlinearities and noise in particular can 
cause serious difficulties in operation of the high gain schemes. Limit cycling 
has posed a problem. Considerable simulation and flight testing of the high gain 
schemes has been necessary due to the lack of adequate analytical design procedures. 
This author knows of no published work specifically applying the high gain scheme 
to re-entry flight control.

MODEL REFERENCE ADAPTIVE SYSTEMS

In this approach, a reference model is employed as part of the adaptive loop. 
The model represents "ideal" performance characteristics of the closed loop dynamic 
process. The difference between the model response and actual system response is 
an error signal which the adjusting process uses to adjust one or more system para 
meters in order to cause the actual system to approximate the model, Figure 14 
shows a generalized model reference system. Model reference adaptive systems can 
be separated into one of several categories depending upon the makeup of the adap 
tive loop.

1. Adaptive loop input signals
a. normal control loop signals 
b. external test signals

2. Control loop modification methods 
a. parameter adjustment methods 
b. parameter perturbation methods 
c. signal synthesis methods

3. Adjusting mechanism system model 
a. explici t model 
b. implicit (identified) model
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k. Adjusting mechanism decision techniques 
a. performance index techniques 
b. gradiant techniques 
c. second method techniques

Adaptive Loop Input Signals

The operation of the adaptive loop may be with normal operating control sig 

nals or with external test signals. Generally, "faster" adaptation will occur when 

normal operation signals are used. Use of normal operating signals in the adaptive 

loop may present an adaptive loop,stabi1ity problem for some signals and will gener 

ally prevent analytical design of the adaptive loop.

Control Loop Modification Methods

By far the most widely used method of control loop modification is parameter 
adjustment,(''> '2,13; ; n which the parameters of the various compensation elements 

are adjusted such that the error signal is minimized. In the parameter perturbation 

technique^ > •*' a system parameter is perturbed with a small sinusoidal fluctuation 

The error exhibits an oscillatory component at this same frequency. The parameter 

is then adjusted in such a fashion that the time average of the error function is 

minimized. In the control signal snythesis method,''"' control loop modification 

consists of generation of a signal, added to the basic dynamic system such that the 

"error" between the model and the dynamic system is minimized.

Adjusting Mechanism System Model

If the adjusting mechanism uses an identified model to represent the unknown 

physical system, the adjusting mechanism is then said to use an implicit model. If 

the adjusting mechanism uses some reasonable assumption as to the needed data on 

the dynamic performance characteristics of the system (such as provided by the re 

ference model) the adjusting mechanism is then said to use an explicit model.

Adjusting Mechanism Decision Techniques

Three basic adjusting mechanism decision techniques have been discussed in the 

literature. The basis for operation of the performance index technique is the mini 

mization of the integral of a quadratic function of the error and its derivatives. 

Two typical performances indices are 2

~f+a9 ^f+a. ^fi dt -46- 
dt 2 dt 2 3 dt3 J

/ j 2 ^ \2 /j3_n
dt -47-

Some partial derivatives of the performance index must be zero in order for the per 

formance index to be minimum. The term "error quantity" has been used by the M.I.T. 

group which originally investigated this type of adaptive system to indicate the 

need for parameter adjustment. For Equation 47 with b« = b = 0 and slowly varying
P ^ 
n :\

The terms Se/^P and d/dt (Be/dP ) are called error weighting functions Wn (t) and
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d W /dt. Since the model output is not a function of P , the error weighting func 
tions become 3c/Sp and d/dt(dc/dp ) which cannot be evaluated without identifica 
tion of the dynamic characteristics of the system. Figure 15 illustrates the M.I.T. 
method of explicit generation of the error quantity for a particular case in which
P is a forward loop gain, In terms of Laplace transforms (for slowly varying P )

Wn (s) = dp
n

G2 (s)

62 (s)
R(s)

1 + G,(s)
-49-

The first term in this expression represents the closed loop poles and zeros of the 
system. The last term is the Laplace transform of the signal E, . If it is assumed 
that the model is an accurate representation of the system then the model transfer 
function may be used instead of the system function as a weighting function filter 
to yield Figure 15. Osburn''" has demonstrated by appropriate simulations that 
this approximation works very well when an accurate model is chosen and when the 
unknown system parameters are near those of the model. The derivative error weight 
ing function d W /dt can be generated in a similar fashion. The adjustable para 
meter P is then nadjusted in accordance with an appropriate linear differential
equation. /&i-' M cvp

dt o-t j

P n (s) = A(s) [EOJ n (s)

-50-

-51-

or possibly even a nonlinear differential equation. The basic M.I.T. system uses a 
rate of change of the parameter directly proportional to the slope of the error 
quantity ^p

5T - - bo e(t) Wn (t) -»'

The response character ist ics of the adaptive loop are of course dependent upon 
the adaptive loop -transfer characteristics given by Equation 50, as well as the ex 
plicit or implicit model used in the adjusting system and the input signal r(t). 
Since the adaptive loop is nonlinear, a simple stability analysis or compensat ion 
procedure is not available. The adaptive loop may be linearized by letting

P (t) = P + AP (t) -53-
n n u • i nNorn i na I

and by dropping the products of dependent variables in writing the equations of the 
adaptive loop. This yields the linear time varying system of Figure 16 where it is 
assumed that the model is of the same order as the system with

= P = P

Model Nominal
If the coefficient matrix or transfer function of the model is considerably differ 
ent from that of the system, the linearized model of the adaptive loop is much more 
complicated. In this linearized model, it is apparent that adaptive loop stability 
is greatly dependent on the input signal. If a "fast" adaptive loop is to be designed, 
it seems reasonable to expect that a standard test input r(t) should be used in the 
adaptive loop.

In order to operate the adaptive portion of the loop with non normal test sig 
nals an identification technique can be used to establish the characteristic para-
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meters of the physical system. This identified system will also serve as the im 
plicit model for the weighting function filter. Preliminary results of an identi 
fication technique investigation using sinusoidal test signals and a time variable 
transform are discussed in the next section. Once the characteristics of the un 
known dynamic system are identified, any r(t), convenient for adaptive loop design 
purposes, may be applied to the identified model in order to determine parameter 
adjustments for the control loop.

The basis for the gradiant decision technique consists of formulation and 
minimization of a quadratic function of the error, e(t) and its derivatives.' 18 ' 
This minimization is achieved by forming the gradient vector of the error adjusting 
appropriate system parameters on an incremental basis such as via a steepest des 
cent procedure until the minimization of the error functional is achieved. The 
differences between the gradient approach and the performance index approach are 
primarily in terms of the initial adaptive loop problem formulation. The two 
methods generally lead to essentially the same end result.

In the area of adjusting method decision techniques, use of the second method 
Liapunon has been proposed to give insight as well as a method of approach.^'"' 
Since it is desired to alter the control loop in order to cause the unknown system 
to appear like the model, the error between the plant and the model must be asymp 
totically stable. A positive definite Liapunov function is formed for the error 
equation, e(t). The adjusting mechanism equations are selected so as to cause the 
time derivative of the Liapunov function to be as negative definite as possible. 
This insures asymptotic stability and "tends towards" time optimal performance of 
the adaptive loop.(20) ^s m ight be expected there is considerable similarity be 
tween this method and the gradient and performance index techniques.

Optimal Adaptive Control Systems

One very complex but highly promising form of adaptive control is on line op 
timal adaptive computer control. The basic theory of optimal control has been de 
veloped by Pontryagin, Bellman, Kalman, and others. Most of this theory assumes 
that (I) the components of the state vector can be measured exactly and fed back 
in the mechanization of the optimal system, (2) the value of the system parameters 
(system characteristic matrix) is known exactly. Application of optimization theory 
to cases where these assumptions are not valid results in optimal adaptive control.

A rather general sketch of one method for implementing optimal adaptive control 
Is shown in Figure IJ. The Inputs to the optimum control computer consists of the 
Identified model of system dynamics and the performance Index. The output of the 
optimal control computer will be the optimal (or suboptimal) control vector u , 
which will be used (in conjunction with any low level test input signal) as the 
process Input.. .

The performance criterion will generally be- specif fed by guidance accuracy re 
quirements in conjunct ion: with constraints Imposed by heating and maximum accelera 
tion requirements. Thus the performance index PI can be expressed as a function

PI =£T g(Mr, x, t) dt + h £x(t), T] -55-Jto ~ "

The performance Index Is generally' simplified -by dropping terms which are small 
in comparison to dominant terms,. Since'the identification of re-entry dynamics will
be subject to some non-reducible error, there will be nothing gained in refining the 
performance crIterI on beyond a certaIn poi nt.
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The calculus of variations may be applied to determine necessary conditions 
for a maximum or minimum of equation 55- The calculus of variations treats con 
tinuous decision problems which are limiting cases of multistage decision problems 
(dynamic programming) where the time increment between steps becomes small compared 
to the time of interest. Actually the reverse problems are more common today. Con 
tinuous problems are approximated by multistage decision problems for solution on a 
digital computer.

The task of the optimal control computer is to maximize or minimize the per 
formance index subject to the equality constraint that

x - f(x, M., t) = 0 -56-

which is the vector differential equation describing the re-entry and actuator dy 
namics .

Following the usual variational procedure, the process differential equation 
is adjoined to the performance index with a Lagrange multiplier vector A.(t) to give

PI = h[x(T), T] + f (g Mt), x(t), t] + A'(t) <( f [x(t), [i(t), t] - x^>}dt -57-

t o

A scalar function H (the Hami 1 tonian) is defined as

H [x(t), ML(t), t] = g[x(t), ii(t), t] + X'(t) f[x(t), |i(t), t] -58- 

The performance index upon integrating by parts becomes

PI = h[x(T),T] - X'(T) x(T)+X/ (to)x(to)+J{H[x(t), M.(t) , t] + XX (t)x(t)}dt -59-

O

The variations in the performance index due to variations in the control vector 
|l(t) and state vector x(t) (for fixed T) are

.t. » —
t=T t=t oo

Since the variation is independent of small changes in x(Ax) if the performance In 
dex in a true maximum (or minimum) it follows that

^' ^H , \' f-r\ ^h £i A = - <g- and 1 (T) = ^r -6la-
6* di -61 fa-

Equation 61 a is called the adjoint equation and equation^lb gives the boundary con 
ditions for the adjoint at the terminal time. The variation in the performance in 
dex then becomes j 

x(to ) +JfApl =X'(to)Ax(t) + A^ dt -62-

For an extremum, Ap must be zero for arbitrary A^ and this can only happen If

|!i = 0 t < t < T ' -63-
d if ° , . (21) This is a very s impl i f ied ""development of the Pontryagin Maximum Principle 1 ' and

is: not, in its present form, as general as the maximum principle of Pontryagin.

For linear systems, the principle of superposition can be invoked and solutions
obtained without much difficulty. In fact, If
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PI = S x(T) Q(t) C(t) x(t) dt -64-

and i f
x = A(t) x 4- B(t) |JL

y(t) = c(t) x(t)
the optimal control law is linear and time varying

= K(t) x

K(t) = -R"'(t) B'(t) P(t) x(t)

where P(t) is the solution to the matrix Riccati equation

" dt" = A/P + PA " PBR ~' B/P + C/(iC 

with the terminal condition

P(T) = S

-65-

-66-

-67-

-68-

For this case the optimal controller is a linear time varying feedback system in 
which all state variables of the system must be known at all times to effect con 
trol. This optimal control scheme was first proposed by Kalmanr^ Attempts have 
been made by several investigators to extend and simplify this method of optimal 
control . 3

In order to apply this technique to the re-entry problem it is necessary to 
determine a nominal trajectory and linearize the re-entry dynamics about this nom 
inal trajectory. An example of interest is the lambda matrix control scheme which 
Denham and Bryson ^H have applied to the guidance of a low L/D vehicle which enters 
the atmosphere at superci rcul ar velocity. Bryson and Denham propose a re-entry 
scheme which uses aerodynamic braking and lift for control purposes.

The essential features of the lambda matrix control consist of storage in a 
fixed memory for a sufficient number of nominal trajectories and associated lambda 
matrices. (Time varying feedback gains). These must be sufficient to cover the ex 
pected range of re-entry velocities and corridors of possible initial entry angles 
associated with each re-entry velocity. The control law for re-entry guidance takes 
the form , ,

D control D nominal V
8h SR + -69-

where A represents the gains (lambda matrices) determined by the Wiener Kalman op 
timization procedure. A block diagram of the lambda matrix guidance scheme is shown 
in Figure 18.

Unfortunately the optimum control law is in general strictly unrealizable for 
any but systems with known dynamics. The Riccati equation must be solved backward 
in time from t = T to t = o which requires knowledge of A(t) over the interval 
0 to T. In general this information is not available at t = o. Thus it is necessary 
to obtain from identification of the re-entry dynamics some prediction of A(t), 
B(t), and C(t) into the future at least as far as several time constants of the 
Riccati equation for the control problem. Methods for doing thi-s have not been de 
veloped, but are the subject of much current research. When accomplished, this will 
remove the restriction that the system parameters be known exactly throughout the 
entire re-entry.

Normally, the state vector x cannot be observed directly. What is observed is
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a vector y which is corrupted by noise. Mathematically this is expressed as

x = A(t) x + W(t) + B(t) l-L(t) -70-

y(t) = C(t) x(t) -71-

z(t) =^(t) + V(t) -72-

often W(t) and V(t) are uncorrelated zero mean Gauss ian random vectors with covari- 
ance matrices T

E (V(t) V'(IT)} = Rvv ( t , T) = R(t) S(t-T) -73-

E tW(t) WT (T)} = R^Jt, T) = Q(t) 5(t-T) -7^-

The filtering problem of optimal adaptive control consists in determining a 
linear operator on the set z(t) of observations 0 < t < t whose value x(t /t) is 
the unbiased minimum variance estimate of x(t). Kalman has shown that~x(r/t) is 
the output of a dynamic system governed by the equation

= A(t) x (t/t) +.K(t) [z(t) - C(t) x (t/t)] -IS-

where K(t), the gain of the optimal filter is determined by the covariance matrix 
of the errors of the optimal filter .

K(t) = 2(t) C'(t) R (t) -76- 
where .

|||= A(t) Z + E A'(t) - Z C x (t) R (t) C(t) 2 + Q(t) -77-

with
Z(to) = E {x (to) x'(to) } -78-

The Riccati equation for the filtering problem (variance equation) is solved for 
ward in time. Thus the solution to the filtering problem is completely realizable. 
Much current effort is attempting to answer unresolved questions concerning optimal 
adaptive control. The largest unexplored areas appear to concern proper identifi 
cation techniques and selection of appropriate performance indices. It appears that 
optimal adaptive control will have more direct applications to guidance or inte 
grated guidance and flight control systems than it will have to flight control sys 
tem design.

FAST IDENTIFICATION FOR MODEL REFERENCE ADAPTIVE SYSTEMS

Current research is being undertaken by this author and W. Clay Choate in 
order to determine ultimate performance limitations for a particular fast identifi 
cation technique which is proposed in order to allow the adaptive loop of a model 
reference parameter adjustment system to operate with external inputs and to pro 
vide an implicit model for the weighting function filter. Although the intended 
application is for model reference systems, the technique may be useful for identi 
fication in optimal adaptive systems as well.

25
The technique is based on the time varying frequency transform of Zadeh.

Use is made of the property that this transform satisfies a linear ordinary dif 
ferential equation closely related to the differential equation which describes the 
dynamics of the re-entry system. Provided the transform can be measured, it can be 
substituted into its differential equation, and the coefficients of the equation 
determined. Through algebraic manipulation of these coefficients, the character 
istic matrix of the differential equation describing the unknown system may be ob 
tained. Periodic repetition of this procedure permits the time variation of the 
system to be discerned.

589



To formulate the problem in mathematical terms, the single input linear sys 
tem, described by

px = A(t) x + B(t)y -79-

y •- Cx + Dy , -80- 

is considered. In these equations

p = d/dt (differential operator

x is the n-dimens ional state vector

x7 = [X] , x2 , . ./xn ] = [x, Px, ..., P n " ] X]

y is the 1 -dimens ional output vector defined by equation 80 
in terms of the known matrices C and D.

-81-

It is assumed that at least the first component x, of x can be obtained instanta 
neously from y.

1~L is the m-d imens ional input vector, related to the single (scalar) input M*
according to the equation _ ,

y, 1 = [M..PU, — , Pm ~ M, ] -82-

Matrices A(t) and B(t) are not known completely, but are assumed to have the forms

A(t) - [a . k (t)

B(t) = [b. k (t)

0

0

0

a nl (t)

"o

0

0><*>

1
0

0

n2

0

0

0

0

1

0

>. (t} a n 3 (t)

0

0

0

,(t) b n3 (t)

... 0

... 0

... 1

... a (t) 
nn

... 0

... 0

... 0

. . . b (t) nm

-83-

-84-

or are assumed to be convertable to these forms by a linear non-singular transforma 

tion of variable in equation 79- Thus, phrased in terms of equation 79, the iden 

tification problem becomes that of determining the time functions

an .(t), I = 1, ..., n -85- 

b n|< (t), k = 1, ..., m

of matrices A(t) and B(t). In the general case, some of the n + m functions of 
equation 85 may be known a priori. This situation, of course, simplifies the iden 

tification problem, and will be discussed later.

where

The time varying frequency transform h(j^, t) is defined as

h (ju.t) = T(jw)

T (ju) = [t..(j<

-86-

-87-
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t i-k
> k

t jk (jw) = 0, i < k

|T(JW)|-

-89-

-90-

-91-
-00

W(t,<|) is the response of the state variable when the input is a unit impulse oc 
curring at time t = % It may be readily verified the definition gives the follow 
ing property to the elements of h(j(J,t)

h.(ju,t) = ph M (j(J,t), i = 2, ..., n -92-

While h(jcj,t) is defined in terms of the impulse response of equation 79, it is 
possible to express it in terms of the response of equation 79 to sinusoidal ex 
citation. In fact, an alternate definition of h(j(J,t) is

T(J(J),S (jcj,t) -93-

where T(j(j) is defined in equation 87 and^(j(J,t) is the response of equation 79 
to u = e-) ut . The proposed identification scheme makes use of equation 93 as a 
means for determining h(jCJ,t).

The elements of h(jcj,t) belong to the field of complex numbers. Since meas 
urements necessarily involve real numbers, it is convenient to break this vector 
into real and imaginary components. Using the abbreviation h = h(j(j,t) and the 
notation subscript "R" for "real part of ..." and subscript "I" for "imaginary part 
of ...",and regarding (J as a fixed parameter, it can be shown that

V
h

K

E,(ju,t)

-E (j(J,t)
1

E R (jw,t)
I

k (jw.t) "I

where the n X n matrix E(j(J,t) is of the general form of A(t) with elements 
(e related to the elements {a .(t)} of A(t) by the equations 

n+1

k=r

the additional element a n n+ ](t) is taken to be -1. 
lated to matrix B(t) of (79) by

1

The n-vector k(jw,t) is re

k(jw,t) = B(t)
Cm-1

-96-

If h and ph are available, substitution in equation 9^ gives with the aid of 
equation"95 and equation 96 two algebraic equations in the functions of equation 85- 
Measurements of h at q frequencies u. , u . . . , CJ , i > k=>(J. > u^ 9 gives 2q such 
equations. Assuming that s of the n + m functioni are known apriori, it follows 
that the matrices A(t) and B(t) can be identified if
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q = i(n + m - s) or q = i(n + m + 1 - s) -97- 

depending upon which is the integer.

Consider briefly the problem of measuring the time varying transform. For a 

test signal

~ = ^ cos (J.t -98-

applied as input, the response of, the system is, by equation 93 and the principle 

of superposition,

^ i i
x(t) =\([T~ (jw.)h(jw.,t)] cos w.t + [T (j(J.)h(j(J t) ] sin w t } -99-
- / I — I ft I I — I I . I 

L——i
i = l

Since the non-singular matrix T(jcj) is known, h(j^.,t), i = 1, ..., q, may be meas 

ured by demodulation of x(t).

The bifrequency transform is defined as

/
oo/oo 
h(jw., t) ejU it e"j|lt dt -100-

-00

it can be shown that successful demodulation of equation 99 requires that

IIP (J w ,» JM-) II = 0 for |i = 0 and |a > w -101- 

and /
J^:,,. JM-) > - °* V- - 102 -

and ¥• i = 1 , 2, . . . , q-1.

Since the bandwidths of thej_ (jcj. , J|JL) increase as the rates of parameter variations 

increase, rapidly changing systems require large and widely separated test fre 

quencies. However, greater attenuation of high frequency components by the average 

system makes measurement of h(j(J,t) more difficult in this case. Further, it can 

be shown that the operations leading from (13) to (l) become more sensitive to meas 

urement errors when the frequency is large. For this reason, the best choice of 

test signal frequencies depends, in part, on the noise present. The investigation 

of this problem will be the subject of another paper.

The proposed identification scheme becomes difficult to implement when the 

order of the system is high, particularly if (2) cannot be solved for the state 

vector x. However, if the system can be broken down into a stationary part and a 

low order time varying part, the identification procedure becomes much simpler. In 

fact, if the time varying part follows the stationary part, the identification is 

no more difficult than if only the time varying part were to be identified.

The following areas are now under consideration:

1. Computer simulation of Mfast n identification schemes

2. Theoretical and experimental studies of problems resulting from the
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presence of guidance commands in the adaptive loop. 

3. Evaluation of the merits of different test signals.

k. Simulation and analytical study of closed loop implicit parameter 
adjusting model reference re-entry systems.

Final evaluation of this proposed method for re-entry flight path control 
will depend upon completion of the above tasks and will be reported in the near 
future.
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TABLE 1 - LIST OF SYMBOLS

A Lift acceleration

A Airframe characteristic area, usually taken to be the wing planform area
c Airframe characteristic length, usually taken to be the wing base chord
Cn Dimensionless coefficient of drag

C. Dimension!ess coefficient of lift

CM Dimensionless coefficient of pitching moment
Cn Base drag coefficient (a = 0)

C L° Coefficient of 1ift

Cn Coefficient of drag

C' Dimensionless equivalent skin friction coefficient

D Drag force
_fr\
F Total externally applied force

g Acceleration due to gravity, assumed constant and equal to 32.17 ft per sec2

Altitude

Unit vect

Pitch moment of inertia

i Unit vector in the direction of total velocity

y
j Unit vector in the lift direction

I Reaction jet moment arm length

L Lift force

M Effective moment of inertia of control flap x
m Vehicle mass

P Pitching torque

Q. Total heat transferred foot pounds

q Dynamic pressure pounds per square foot

R Range measured as arc length on the earth's surface
r Earth's radius e
S Surface area

T Thrust from reaction, jet

V Total vehicle velocity

W Vehicle weight
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TABLE 1 - LIST OF SYMBOLS 
(Continued)

a Angle of attack

0 Range angle

0. Atmospheric pressure gradient, approximately equal to 1/23,500 ft/\

T Flight path angle measured positive upward from the local horizontal

8 Drag flap deflection

8 Control surface deflection intended to produce pitching moment

9 Airframe pitch angle with respect to the local horizontal

p Atmospheric density slugs per cubic foot

p Nominal sea level atmospheric density, equal to 0.0027 slugs per cubic foot
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Cn 
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h V q
Ft Ft/Sec Lbs/Ft
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2)
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9 L

U U
1 2

.025 100

.041 98
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5- 27-. 09
2.97 9-

4.3 38
8.1 18.
4.3 29

4.2 23
7-0 36
3.7 21

POLE ZERO PATTERN

0*>7) (

1 ~2

33 44 55

27.79

27.79 5607.41 5907.07

4 807 . 59
817.6

05 807.5 5407.42 591-017

1707.2
5 1727.23

190/-.035 5107.5 6007.05

1307.31
1407.35
1457.13 5207.44 597/-04

TABLE 2

OF RE-ENTRY FLIGHT CONTROL SYSTEM

z 1

5

5
5
5 -:
5
5
5 -2

5
5
5 -1

CJ, kL
Ui + 2 -

>M zr, r)(I + "

z z 
2 •
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FIGURE I - PITCH PLANE MODEL OF A LIFTING RE-ENTRY VEHICLE
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FIGURE 8 - LINEARIZED BLOCK DIAGRAM OF FLIGHT CONTROL SYSTEM

100-0

10.0

1.0

.01

.001

200
23,000 

q * 20,000 
V = 22,700 
q = 50,000 
V = 21,250

<f = 100^000 

V = 14,500

10 100 1000

FIGURE 9 - BODE DIAGRAM OF FOR BLOCK DIAGRAM OF FIGURE 13 AND VARIOUS 
FLIGHT CONDITIONS

603



LA

CD 
i_ 

CD

C

CD 
L, 
TO

(L) 
(A 
03 

JC 
CL.

RANGE FROM TARGET

500,000 ft 400,000 ft. 

FIGURE 10

300,000 ft. 200,000 ft. 100,000 ft, 

ACCEPTABLE PERFORMANCE BOUNDARY WITH CONSTANT GAIN K



01 
o 
en

500,000 ft, 400,000 ft. 200,000 ft.300,000 ft. 
RANGE FROM TARGET 

FIGURE 11 - ACCEPTABLE PERFORMANCE BOUNDARY REQUIRING ADAPTIVE CONTROL

100,000 ft, 0 ft



•t)1 — FIXED
COMPENSATION

VARIABLE 
GAIN

MINOR
LOOP

FEEDBACKS

ACTUATOR
RE-ENTRY 

DYNAMICS

GAIN 
CHANGER

- — _ - J

"MODEL*

FIGURE 12 - HIGH GAIN ADAPTIVE RE-ENTRY FLIGHT CONTROL SYSTEM

ACTUATOR 
POLE

ACTUATOR 
POLE

MODEL 
ZERO

ACTUATOR 
POLE

MODEL 
ZERO

ACTUATOR 
POLE

ACTUATOR 
POLE

FIGURE 13 - TYPICAL ROOT LOCUS OF HIGH GAIN ADAPTIVE RE-ENTRY SYSTEM

606



RCt)-

PREFILTER CASCADE COMPENSATION
PHYSICAL 
SYSTEM

A 
I 
I 
I 
I 
I

FEEDBACK 
COMPENSATION

PARAMETER ADJUST OR _ 
PERTURBATION SIGNALS

CONTROL SIGNAL SYNTHESIS

I
H(s)

REFERENCE MODEL

I _____ 
04JT ADJUSTING 
jjj MECHANISM

DECISION
AND 

MODIFICATION

G M(S)

e(t)

FIGURE 14 - GENERAL MODEL REFERENCE ADAPTIVE SYSTEM

MODIFICATION 

LOGIC

WEIGHTING 
FUNCTION 
FILTER

MULTIPLIER

" e(t)

MODEL
CM (t)

FIGURE 15 - MODEL REFERENCE PARAMETER ADJUST SYSTEM WITH ADJUSTABLE FORWARD 
GAIN

CCt)

c(t)

607



rCt)
1

l+G,C9PhN G2 <S)

WEIGHTING 
FUNCTION 
FILTER

G , (S) PnN G2(S)

|fG,(S)F> N G2 (S)
WB (t)

ACS)

G,CS)PnNG2 (S) e, (t)

FIGURE 16 - LINEARIZED ADAPTIVE LOOP FOR SYSTEM OF FIGURE 15.

-APn (t)

W(t)
I DISTURBANCE

B(t)

LOW LEVEL 
TEST SIGNAL

OPTIMUM
CONTROL 

COMPUTER

IDENTIFICATION 
COMPUTER

XX
X

STATE VARIABLE
ESTIMATION 

COMPUTER

ACTUATOR & 
RE-ENTRY 

DYNAMICS

FIGURE 1? - OPTIMUM ADAPTIVE CONTROL SYSTEM

C(t)

MEASUREMENT 
NOISE

608



o CD

NOMINAL 
STATE 

VARIABLE 
STORAGE

-SxCto)

M
X(t.)

SENSORS

A2
MATRIX 

STORAGE

V

MULTIPLIER

ACTUAL 
STATE

VARIABLES

A ,
MATRIX 

STORAGE

A,Ct)

MULTIPLIER

VEHICLE

1

NOMINAL 
CONTROL
VARIABLE 
STORAGE

a*Ct)

aCt)

CONTROL 
SIGNAL

DISTURBANCES

FIGURE 18 - BLOCK DIAGRAM OF^Y -MATRIX GUIDANCE SCHEME


	A Model Reference Adaptive Re-Entry Flight Control System
	Scholarly Commons Citation

	tmp.1407785185.pdf.9NgbD

