1,445 research outputs found

    Selection of systems to perform extravehicular activities, man and manipulator. Volume 2 - Final report

    Get PDF
    Technologies for EVA and remote manipulation systems - handbook for systems designer

    Pore scale numerical modeling of elastic wave dispersion and attenuation in periodic systems of alternating solid and viscous fluid layers

    Get PDF
    Numerical pore-scale simulation of elastic wave propagation is an emerging tool in the analysis of static and dynamic elastic properties of porous materials. Rotated staggered-grid (RSG) finite difference method has proved to be particularly effective in modeling porous media saturated with ideal fluids. Recently this method has been extended to viscoelastic (Maxwell) media, which allows simulation of wave propagation in porous solids saturated with Newtonian fluids. To evaluate the capability of the viscoelastic RSG algorithm in modeling wave dispersion and attenuation we perform numerical simulations for an idealized porous medium, namely a periodic system of alternating solid and viscous fluid layers. Simulations are performed for a single frequency of 50 kHz (for shear waves) and 500 kHz (for compressional waves) and a large range of fluid viscosities. The simulation results show excellent agreement with the theoretical predictions.Specifically the simulations agree with the prediction of Biot's theory of poroelasticity at lower viscosities and with the viscoelastic dissipation at higher viscosities. The finite-difference discretization is required to be sufficiently fine for the appropriate sampling of the viscous boundary layer to achieve accurate simulations at the low values of viscosity. This is an additional accuracy condition for finite-difference simulations in viscoelastic media. 2006 Acoustical Society of America

    DNA nanotweezers studied with a coarse-grained model of DNA

    Full text link
    We introduce a coarse-grained rigid nucleotide model of DNA that reproduces the basic thermodynamics of short strands: duplex hybridization, single-stranded stacking and hairpin formation, and also captures the essential structural properties of DNA: the helical pitch, persistence length and torsional stiffness of double-stranded molecules, as well as the comparative flexibility of unstacked single strands. We apply the model to calculate the detailed free-energy landscape of one full cycle of DNA 'tweezers', a simple machine driven by hybridization and strand displacement.Comment: 4 pages, 5 figure

    Obtaining reliable source locations with time reverse imaging: limits to array design, velocity models and signal-to-noise ratios

    Get PDF
    Time reverse imaging (TRI) is evolving into a standard technique for locating and characterising seismic events. In recent years, TRI has been employed for a wide range of applications from the lab scale, to the field scale and up to the global scale. No identification of events or their onset times is necessary when locating events with TRI; therefore, it is especially suited for locating quasi-simultaneous events and events with a low signal-to-noise ratio. However, in contrast to more regularly applied localisation methods, the prerequisites for applying TRI are not sufficiently known.To investigate the significance of station distributions, complex velocity models and signal-to-noise ratios with respect to location accuracy, numerous simulations were performed using a finite difference code to propagate elastic waves through three-dimensional models. Synthetic seismograms were reversed in time and reinserted into the model. The time-reversed wave field back propagates through the model and, in theory, focuses at the source location. This focusing was visualised using imaging conditions. Additionally, artificial focusing spots were removed using an illumination map specific to the set-up. Successful locations were sorted into four categories depending on their reliability. Consequently, individual simulation set-ups could be evaluated by their ability to produce reliable source locations.Optimal inter-station distances, minimum apertures, relations between the array and source locations, heterogeneities of inter-station distances and the total number of stations were investigated for different source depths and source types. Additionally, the accuracy of the locations was analysed when using a complex velocity model or a low signal-to-noise ratio.Finally, an array in southern California was investigated regarding its ability to locate seismic events at specific target depths while using the actual velocity model for that region. In addition, the success rate with recorded data was estimated.Knowledge about the prerequisites for using TRI enables the estimation of success rates for a given problem. Furthermore, it reduces the time needed to adjust stations to achieve more reliable locations and provides a foundation for designing arrays for applying TRI.</p

    Slow compressional wave in porous media: Finite difference simulations on micro-scale

    Get PDF
    We perform wave propagation simulations in porous media on microscale in which a slow compressional wave can be observed. Since the theory of dynamic poroelasticity was developed by Biot (1956), the existence of the type II or Biot's slow compressional wave (SCW) remains the most controversial of its predictions. However, this prediction was confirmed experimentally in ultrasonic experiments. The purpose of this paper is to observe the SCW by applying a recently developed viscoelastic displacement-stress rotated staggered finite-difference (FD) grid technique to solve the elastodynamic wave equation. To our knowledge this is the first time that the slow compressional wave is simulated on first principles

    Self-assembled guanine ribbons as wide-bandgap semiconductors

    Full text link
    We present a first principle study about the stability and the electronic properties of a new biomolecular solid-state material, obtained by the self-assembling of guanine (G) molecules. We consider hydrogen-bonded planar ribbons in isolated and stacked configurations. These aggregates present electronic properties similar to inorganic wide-bandgap semiconductors. The formation of Bloch-type orbitals is observed along the stacking direction, while it is negligible in the ribbon plane. Global band-like conduction may be affected by a dipole-field which spontaneously arises along the ribbon axis. Our results indicate that G-ribbon assemblies are promising materials for biomolecular nanodevices, consistently with recent experimental results.Comment: 7 pages, 3 figures, to be published in Physica

    Digital carbonate rock physics

    Get PDF
    Modern estimation of rock properties combines imaging with advanced numerical simulations, an approach known as digital rock physics (DRP). In this paper we suggest a specific segmentation procedure of X-ray micro-computed tomography data with two different resolutions in the µm range for two sets of carbonate rock samples. These carbonates were already characterized in detail in a previous laboratory study which we complement with nanoindentation experiments (for local elastic properties). In a first step a non-local mean filter is applied to the raw image data. We then apply different thresholds to identify pores and solid phases. Because of a non-neglectable amount of unresolved microporosity (micritic phase) we also define intermediate threshold values for distinct phases. Based on this segmentation we determine porosity-dependent values for effective P- and S-wave velocities as well as for the intrinsic permeability. For effective velocities we confirm an observed two-phase trend reported in another study using a different carbonate data set. As an upscaling approach we use this two-phase trend as an effective medium approach to estimate the porosity-dependent elastic properties of the micritic phase for the low-resolution images. The porosity measured in the laboratory is then used to predict the effective rock properties from the observed trends for a comparison with experimental data.The two-phase trend can be regarded as an upper bound for elastic properties; the use of the two-phase trend for low-resolution images led to a good estimate for a lower bound of effective elastic properties. Anisotropy is observed for some of the considered subvolumes, but seems to be insignificant for the analysed rocks at the DRP scale. Because of the complexity of carbonates we suggest using DRP as a complementary tool for rock characterization in addition to classical experimental methods

    Regional climate variability in the western subtropical North Atlantic during the past two millennia

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA2206, doi:10.1029/2010PA002038.Western subtropical North Atlantic oceanic and atmospheric circulations connect tropical and subpolar climates. Variations in these circulations can generate regional climate anomalies that are not reflected in Northern Hemisphere averages. Assessing the significance of anthropogenic climate change at regional scales requires proxy records that allow recent trends to be interpreted in the context of long-term regional variability. We present reconstructions of Gulf Stream sea surface temperature (SST) and hydrographic variability during the past two millennia based on the magnesium/calcium ratio and oxygen isotopic composition of planktic foraminifera preserved in two western subtropical North Atlantic sediment cores. Reconstructed SST suggests low-frequency variability of ∼1°C during an interval that includes the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). A warm interval near 1250 A.D. is distinct from regional and hemispheric temperature, possibly reflecting regional variations in ocean-atmosphere heat flux associated with changes in atmospheric circulation (e.g., the North Atlantic Oscillation) or the Atlantic Meridional Overturning Circulation. Seawater δ 18O, which is marked by a fresher MCA and a more saline LIA, covaries with meridional migrations of the Atlantic Intertropical Convergence Zone. The northward advection of tropical salinity anomalies by mean surface currents provides a plausible mechanism linking Carolina Slope and tropical Atlantic hydrology.This study was supported by the Woods Hole Oceanographic Institution’s Ocean and Climate Change Institute (OCCI) and by the National Science Foundation

    Statistical Mechanics of Torque Induced Denaturation of DNA

    Full text link
    A unifying theory of the denaturation transition of DNA, driven by temperature T or induced by an external mechanical torque Gamma is presented. Our model couples the hydrogen-bond opening and the untwisting of the helicoidal molecular structure. We show that denaturation corresponds to a first-order phase transition from B-DNA to d-DNA phases and that the coexistence region is naturally parametrized by the degree of supercoiling sigma. The denaturation free energy, the temperature dependence of the twist angle, the phase diagram in the T,Gamma plane and isotherms in the sigma, Gamma plane are calculated and show a good agreement with experimental data.Comment: 5 pages, 3 figures, model improve
    • …
    corecore