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Summary

We perform wave propagation simulations in porous media
on microscale in which a slow compressional wave can be
observed. Since the theory of dynamic poroelasticity was
developed by Biot (1956), the existence of the type II or
Biot’s slow compressional wave (SCW) remains the most
controversial of its predictions. However, this prediction was
confirmed experimentally in ultrasonic experiments. The pur-
pose of this paper is to observe the SCW by applying a recently
developed viscoelastic displacement-stress rotated staggered
finite-difference (FD) grid technique to solve the elastodynamic
wave equation. To our knowledge this is the first time that the
slow compressional wave is simulated on first principles.

Introduction

One of the key predictions of Biot’s theory of poroelasticity
(Biot, 1956) is the fact that in a poroelastic medium, there may
propagate elastic waves of three types: a shear wave and two
types of compressional waves. The first compressional wave
is the one that is very similar to the compressional wave in an
elastic medium, while the second wave, also called type II or
Biot’s slow wave, has a strongly dispersive character. At low
frequencies, at which the flow of the pore fluid is characterized
by the Poiseuille flow, the slow wave has a diffusion-type
character. At higher frequencies, when the viscous skin depth
of the fluid in the pores is smaller than the size of the pores,
the slow wave becomes a normal propagating wave with small
attenuation, and can be approximately described as an acoustic
wave in the pore fluid.
The slow wave at higher frequencies was confirmed experimen-
tally, when the SCW was observed in ultrasonic experiments by
Plona (1980) . Theoretical analysis, e.g. by Dutta (1980), shows
that the observed travel times of the SCW are consistent with
the predictions of Biot’s theory.
Goal of this study is to observe numerically the SCW on first
principles (i.e. by solving the elastodynamic wave equation)
and not by solving Biot’s equations of poroelasticity (Dai et
al., 1995; Gurevich et al., 1999). This is done in 2D with a
comparison to an analytical solution as well as in 3D numerical
experiments. We apply a recently developed viscoelastic
displacement-stress rotated staggered finite-difference (FD) grid
technique (Saenger et al., 2005).

2D Numerical experiments

We consider a system of periodically alternating solid and fluid
layers of period d (Figure 1). The elastic solid has density ρs,
bulk modulus Ks and shear modulus µs. The viscous fluid has
densityρ f , bulk modulus (inverse compressibility) K f , and dy-
namic viscosity η. The solid and fluid layer thicknesses are hs

and h f , respectively, so that hs +h f = d.
Propagation of compressional waves in a periodic system of
solid layers denoted by s and f is governed by an exact dis-
persion equation (Rytov, 1956; Brekhovskikh, 1981; Gurevich,
2002):
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Equation (1) needs to be analysed on the macroscale, that is
in the limit |ωd/c| � 1. However such a theoretical analysis
appears to be too involved, and the analytical solution is only
known in the low-frequency limit (Gurevich, 2002). It has
been shown numerically (Bedford, 1986), that for sufficiently
small values of |ωd/c| attenuation and dispersion predicted by
equation (1) are the same as given by Biot’s dispersion equation.
Note that both equation (1) and Biot’s theory predict both types
of compressional waves (the fast compressional wave and Biot’s
slow wave).

To obtain the effective velocities of slow waves in layered media
we choose the following numerical setup. The synthetic model
contains two horizontal thin layers of viscous fluid and elastic
solid of equal size (thickness: 30 grid points with an interval of
∆x=0.0001 m). The solid has the P-wave velocity vp=5100 m/s,
S-wave velocity vs=2944 m/s, density ρs=2540 kg/m3 and vis-
cosity η=0 kg/m.s. For the viscous fluid we set c11=3.922*1011 ,
c44=1.3*1011 , and ρ f =1000 kg/m3. The fluid viscosity η =

10 kg/(ms) is determined with the choice of ω1 = 1.3∗1010 [see
(Saenger et al., 2005) for details]. To generate a slow-wave in x-
direction ( fdom=50 kHz or fdom=10 kHz), we apply a line source
in z-direction in the fluid and perform the finite-difference sim-
ulations with periodic boundary conditions (in z-direction). The
effective velocity is estimated by measuring the time of the zero-
crossing of the slow wave over a distance of 200 ( fdom=50 kHz)
or 1000 grid points ( fdom=10 kHz; distance between receiver
position 1 and 2; see Figure 1). All computations are carried out
with the second order spatial FD operators and with the second
order time update. The results are shown in Figure 1.
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3D Numerical experiments

To observe a slow wave in a realistic 3D porous solid we
perform simulations with a numerical setup similar to the
experiments described in Saenger et al. (2005). We apply the
3D RSG-technique to explicitely model wave propagation in
fluid saturated porous media. The synthetic porous rock-models
are embedded in a homogeneous fluid region. The full models
are made up of 600x400x400 grid points with an interval of
∆x=0.0002m. For the grain material we set a P-wave velocity of
vp=5100m/s, a S-wave velocity of vs=2944m/s and a density of
ρgrain=2540kg/m3 . For the fluid we set vp=1500m/s, vs=0m/s
and ρv=1000kg/m3 . We perform our modelling experiments
with periodic boundary conditions in the z- and y-direction. We
apply a plane source at the left (x = 0m) of the model. The plane
P-wave generated in this way propagates from the left of the
model to the interface of fluid and fluid-saturated porous media.
The source wavelet is the first derivative of a Gaussian with
a dominant frequency of fsource = 8× 104Hz and with a time
increment of ∆t = 2.1∗10−8s. All computations are performed
with second order spatial FD operators and with a second order
time update.

For the model shown in Figure 2a the incident P-wave generates
from a theoretical point of view (Gurevich et al., 2004) one re-
flected and two transmitted compressional waves (fast and slow).
The reflected P-wave and the transmitted fast P-wave can be de-
tected very clearly from a 2D slice from a snapshot of the full
3D wavefield (Figure 3a). The transmitted slow P-wave can only
be seen by calculating the average displacement field as shown
in Figure 4a.

An analysis based on the boundary conditions at an interface
for Biot’s equations of poroelasticity shows that the slow wave
is generated if and only if there exist at least a hydraulic con-
tact between the free water and the water in the pore space [e.g.
(Rasolofosaon, 1980)]. Therefore we repeat the previously de-
scribed simulation with a small modification: We create a very
thin solid layer at the interface between fluid and fluid-saturated
porous media (Figure 2b). As expected a slow wave can not be
observed in such a simulation as shown in Figure 4b.

Conclusions

We have performed numerical modeling of seismic wave prop-
agation on a micro-scale. A compressional slow wave (a Biot
type II wave) is observed in 2D and 3D simulations. In both
cases we compare our results with theoretical predictions suc-
cessfully. This confirms that the viscoelastic rotated staggered
grid FD method of Saenger et al. (2005) is capable of modelling
poroelastic (associated with global flow) effects with high accu-
racy. To our knowledge this is the first time that the slow wave
is simulated on first principles.
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Fig. 1: Left hand side (a): Medium of alternating solid and viscous fluid layers. Right hand side (b): Numerical (dots) vs. analytical solution
(Equation 1; solid line) for the velocity of the SCW in the medium shown on the left hand side. An excellent agreement is observed.

(a) (b)

Fig. 2: Two different 3D synthetic porous models. The pore structure is defined by the synthetic rock model GRF5 (see Saenger et al. (2005) for
details). White regions indicates water; blue regions indicates grain material. Left hand side (a): Open pores at the interface (x-position ≈ 0.4m).
Right hand side (b): Sealed conditions (a very thin solid layer) at the same interface.

(a) (b)

Fig. 3: A z-displacement snapshot of the wavefield after 2100 timesteps. The reflected P-wave (at x ≈ 0.02m) and the transmitted fast P-wave (at x
≈ 0.07m) are clearly visible. Left hand side (a): Snapshot for the model with open pores at the interface (Figure 2a). Right hand side (b): Same as
(a) but with for the model with a sealed interface (Figure 2b).
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x[m] x[m]

(a) (b)

(c)

Fig. 4: Average of the z-displacement-field after 2100 timesteps and after the incident P-wave was partly reflected and transmitted at the interface
at x= ≈ 0.04m. Left hand side (a): A slow compressional wave can be observed (marked with a circle) using the model shown in Figure 2a). Right
hand side (b): The slow wave is not generated using the model shown in Figure 2b. Center (c): A comparison of both traces.
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