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Numerical pore-scale simulation of elastic wave propagation is an emerging tool in the analysis of
static and dynamic elastic properties of porous materials. Rotated staggered-grid �RSG� finite
difference method has proved to be particularly effective in modeling porous media saturated with
ideal fluids. Recently this method has been extended to viscoelastic �Maxwell� media, which allows
simulation of wave propagation in porous solids saturated with Newtonian fluids. To evaluate the
capability of the viscoelastic RSG algorithm in modeling wave dispersion and attenuation we
perform numerical simulations for an idealized porous medium, namely a periodic system of
alternating solid and viscous fluid layers. Simulations are performed for a single frequency of
50 kHz �for shear waves� and 500 kHz �for compressional waves� and a large range of fluid
viscosities. The simulation results show excellent agreement with the theoretical predictions.
Specifically the simulations agree with the prediction of Biot’s theory of poroelasticity at lower
viscosities and with the viscoelastic dissipation at higher viscosities. The finite-difference
discretization is required to be sufficiently fine for the appropriate sampling of the viscous boundary
layer to achieve accurate simulations at the low values of viscosity. This is an additional accuracy
condition for finite-difference simulations in viscoelastic media. © 2006 Acoustical Society of
America. �DOI: 10.1121/1.2216687�

PACS number�s�: 43.20.Jr �JBS� Pages: 642–648
I. INTRODUCTION

Despite five decades of research into acoustics of porous
media, many questions concerning the nature of acoustic at-
tenuation and dispersion in such media remain unresolved.
Some of these questions can be addressed by numerical
simulations performed on the microscale, that is, on the scale
of individual pores and grains. This approach, which can be
called digital �or computational� rock physics, is increasingly
used to model the effect of pores, fractures, and fluid on the
effective acoustic properties �Roberts and Garboczi, 2000;
Arns et al., 2002; Grechka, 2003; Saenger et al., 2004� as
well as geometrical, hydraulic, and electrical properties of
rocks �Schwartz et al., 1994; Spanne et al., 1994; Auzerais et
al., 1996; Arns et al., 2001; Keehm et al., 2004�. Until re-
cently, most of the computational methods for effective
acoustic properties focused on ideally elastic materials satu-
rated with ideal fluids; however, understanding of acoustic
dissipation requires taking into account the viscosity of the
pore fluids.
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Recently Saenger et al. �2005� developed viscoelastic
rotated staggered grid �VRSG� algorithm that can perform
pore-scale simulation of wave propagation in porous materi-
als saturated with Newtonian fluids. The algorithm of
Saenger et al. �2005� is essentially an extension to viscous
pore fluids of the rotated staggered grid �RSG� finite differ-
ence �FD� method developed by Saenger et al. �2000�. The
fluid viscosity is included by modeling the pore fluid as a
special case of the generalized Maxwell body �GMB�, which
in a wide range of viscosities and frequencies is equivalent to
a Newtonian fluid.

In order to use the VRSG algorithm for the study of
wave propagation in porous media, it is necessary to inves-
tigate whether this algorithms can accurately simulate known
effects in wave propagation in such media. It is known that
attenuation and dispersion of elastic waves in poroelastic
media mainly occurs due to the flow of the pore fluid in-
duced by the propagating waves. Such wave-induced fluid
flow can occur due to pressure gradients between peaks and
troughs in the wave �Biot’s global flow �Biot, 1956a,
1956b��, between more compliant and stiff pores �local or
squirt flow �Mavko and Jizba, 1991; Dvorkin et al., 1995��

and between regions of lower and higher compliance �meso-
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scopic flow �Pride and Berryman, 2003��. The global flow
attenuation and dispersion can occur in homogeneous single-
porosity-media described by the classical Biot’s equations of
poroelasticity �Biot, 1956a, 1956b�, and has a peak at the
so-called Biot’s characteristic frequency

�B =
�

� f�
, �1�

where � and � f are the viscosity and density of the pore fluid
and � is the permeability of the medium. The local flow
attenuation is less well understood. While there is no univer-
sally accepted model of this phenomenon, it is generally be-
lieved that its characteristic frequency is given by

�R =
B

�
�b

a
�n

, �2�

where B is characteristic rock stiffness, a is characteristic
size of the �stiff� pores, b�a is characteristic thickness of
compliant pores �cracks�, and n is a dimensionless constant
usually taken to be equal to 3 �Mavko and Nur, 1975�. The
characteristic frequency of the mesoscopic attenuation is
given by equation �1� with n=2 �Pride et al., 2003�. The
principle difference between Eqs. �1� and �2� is in the role of
fluid viscosity: Increase of fluid viscosity causes an increase
of Biot’s characteristic frequency but a decrease of the char-
acteristic frequency for local and mesoscopic flow. One can
also note that for single porosity medium �that is, a medium
where the size of all pores is of the same order of magnitude�
b /a=O�1� so that

�R =
B

�
. �3�

Therefore, for the single-porosity medium frequency �R is
the same as that for attenuation due to the classical viscoelas-
tic effect, also known as viscous shear relaxation, that is,
stiffening of the material due to fluid viscosity at high fre-
quencies. In other words, in single porosity medium local
flow attenuation reduces to classical viscoelastic attenuation.

In order to be applicable for a detailed simulations of
porous media, the VRSG algorithm needs to be able to simu-
late phenomena with characteristic frequencies given by Eqs.
�1� and �2� or �3�. To do this, one needs to simulate the
dynamic behavior of a porous medium with the VRSG algo-
rithm and compare the results with known expressions for
attenuation and dispersion in such media. While explicit ex-
pressions are known for global-flow �Biot’s� attenuation
�Biot, 1956a, 1956b�, they are not known for local flow
mechanism, which is the least understood.

This problem can be at least partially resolved by con-
sidering an idealized porous medium, such as a periodic sys-
tem of alternating solid and viscous fluid layers. Such a sys-
tem, although very idealized, is known to possess many
features of saturated porous media. In particular, shear and
compressional waves propagating in the plane of the layers
of such system and polarized in the same plane have exhibit
both Biot’s and viscoelastic attenuation with characteristic
frequencies given by Eqs. �1� and �3�, respectively. At the

same time, such a layered system represents the only case of
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a porous medium for which exact expressions for attenuation
and dispersion are known. For these reasons the periodic
system of alternating solid and viscous fluid layers is ideally
suited for testing of the VRSG algorithm.

The objective of this paper is: �1� to perform numerical
simulations of compressional as well as shear wave propaga-
tion, �2� to compute attenuation as well as dispersion of these
waves, and �3� to compare the numerical and theoretical re-
sults for both global and local-flow mechanisms.

First, we review the exact dispersion equations for such
layered systems �Sec. II� and give the basic description of the
VRSG algorithm �Sec. III�. Numerical setup and simulation
results are presented in Sec. IV followed by conclusions
�Sec. V�.

II. THEORETICAL BACKGROUND

Consider a system of periodically alternating solid and
fluid layers of period d �Fig. 1�. The elastic solid has density
�s, bulk modulus Ks, and shear modulus �s. The viscous fluid
has density � f, bulk modulus �inverse compressibility� Kf,
and dynamic viscosity �. The solid and fluid layer thick-
nesses are hs and hf, respectively, so that hs+hf =d.

We analyze the propagation of shear and compressional
waves in the x direction parallel to the layering, with the
displacement in the direction y �for the shear or SH wave�
and to x �for the compressional wave�, both parallel to the
bedding. For a given frequency � the solutions can be sought
in the form of plane waves

uy = uy0exp i��x/b − t� , �4�

for the SH wave and

ux = ux0exp i��x/c − t� , �5�

FIG. 1. Medium of alternating solid and viscous fluid layers.
for the P wave.

l.: Pore-scale numerical modeling: dispersion and attenuation 643



A. Shear waves

Propagation of the SH wave in a periodic system of
solid and viscous fluid layers is governed by an exact disper-
sion equation �Rytov, 1956; Brekhovskikh, 1981; Gurevich,
2002�:

p�tan2 �shs

2
+ tan2 � fhf

2
� + �1 + p2�tan

�shs

2
tan

� fhf

2
= 0.

�6�

Here �s
2=�2�1/bs

2−1/b2�, � f
2=�2�1/bf

2−1/b2�, where bs

= ��s /�s�1/2, and bf = �� f /� f�1/2 are shear velocities in the ma-
terials s and f , respectively, p=� f� f /�s�s and � f =−i��.

Our aim is to solve the dispersion equation �6� on a
macroscale, that is for long waves, to obtain the phase ve-
locities b and c as a function of � for long waves such that
	�d /b 	 �1. In this limiting case equation �6� reduces to
�Gurevich and Ciz, in press�:

1

b2 =
1

�
�� −

� f
2�2

q�����1 + i�/�V
�

1 − �
� , �7�

where �=hf /d is the volume fraction of the fluid layers �po-
rosity�, �=�s�1−�� is the static shear modulus of the sys-
tem, �= �1−���s+�� f is the average density, and

q��� = �� f�1 − �i�/�b�−1/2tan�i�/�b��1/2−1, �8�

is generalized virtual mass coefficient of the layered system.
�B has the role of characteristic frequency and is given by an
equation similar to Eq. �1�:

�B = ��/3�� f = 4�/� fhf
2 �9�

with permeability of porous slabs given by �Bedford, 1986�:

� =
�hf

2

12
. �10�

In turn, �V is viscoelastic characteristic frequency, Eq.
�3�. According to Eq. �7�, the behavior of SH-wave velocity
dispersion and attenuation in the layered system depends on
the ratio �B /�V. When �B��V, Eq. �7� reduces to

1

b2 =
1

�
�� −

� f
2�2

q���� . �11�

The dispersion equation �11� is identical to the dispersion
equation for S waves in a porous medium described by Bi-
ot’s theory of poroelasticity with permeability �10� and vir-
tual mass coefficient �8�, thus confirming the system of solid
and fluid layers as a particular �limiting� case of a poroelastic
medium. In the opposite case �B��V, we have

1

b2 =
1

�
�1 + i�/�V

�

1 − �
� . �12�

This equation describes the standard viscoelastic dispersion
�Gurevich, 1999, 2002�.

The theoretical solutions presented earlier give the com-
plex shear-wave velocity �or slowness� as a function of fre-

quency. The real part of the complex velocity yields the
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phase velocity of the wave, while the ratio of imaginary to
real part of the squared slowness yields the dimensionless
attenuation �inverse quality factor�

QSh
−1 =

Im b−2

Re b−2 . �13�

B. Compressional waves

Propagation of the P wave in a periodic system of solid
layers denoted by s and f is governed by an exact dispersion
equation �Rytov, 1956; Brekhovskikh, 1981; Gurevich,
2002�:

4��s − � f�2K1K2 + �2�s�c2�s − 4��s − � f��K2tan
�shs

2

+ �2� f�c2� f + 4��s − � f��K1tan
� fhf

2

− �2� f�sc
2�L1tan

� fhf

2
+ L2tan

�shs

2
� = 0. �14�

where 	s
2=�2�1/cs−1/c�, 	 f

2=�2�1/cf −1/c� and cs= ��Ks

+4�s /3� /�s�1/2, cf = ��Kf +4� f /3� /� f�1/2 are compressional
velocity in the material s and f , respectively, Im � f =Im 
 f

=−�� ,Kf = �
 f +2� f� /3, and

K1 =
�2

c2 tan
�shs

2
+ 	s�stan

	shs

2
,

K2 =
�2

c2 tan
� fhf

2
+ 	 f� f tan

	 fhf

2
,

L1 =
�2

c2 tan
�shs

2
− 	 f�stan

	 fhf

2
,

L2 =
�2

c2 tan
� fhf

2
− 	s� ftan

	shs

2
. �15�

Similarly to the shear wave case, Eq. �6� needs to be ana-
lyzed on the macroscale, that is in the limit 	�d /c 	 �1. How-
ever, such a theoretical analysis appears to be too involved,
and the analytical solution is only known in the low-
frequency limit �Gurevich, 2002�. However, it has been
shown numerically �Bedford, 1986�, that for sufficiently
small values of 	�d /c	 attenuation and dispersion predicted
by Eq. �14� are the same as given by Biot’s dispersion equa-
tion for fast compressional waves in a porous medium with
steady state permeability �10� and virtual mass coefficient
given by �8�. Note that both Eq. �14� and Biot’s theory pre-
dict another type of compressional wave, so-called Biot’s
slow wave. However, analysis of this highly dispersive wave
is beyond the scope of this paper.

The theoretical expressions summarized in this section
will be used for comparison with numerical simulations.

III. ALGORITHM

To model wave propagation in a solid-fluid mixture, we

apply displacement-stress rotated staggered finite-difference
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grid �Saenger et al., 2000� to solve the elastodynamic wave
equation. With a viscoelastic extension �described in detail in
Saenger et al., 2005� we are able to model wave propagation
in different kinds of porous media.

The theoretical model of viscoelasticity is based on an
approach described by Emmerich and Korn �1987�. Incorpo-
ration of viscosity based on the GMB means that Hooke’s
law is modified

�ij = cijkl�kl − 

m=1

n


m
ij . �16�

In this equation, �ij ,cijkl ,�kl denote the stresses, the elastic
tensor, and the strains, respectively. The number of relax-
ation mechanisms is equal to m. The anelastic functions 
m

ij

are determined by


m
ij + �m
m

ij = �mỸm
ijkl�kl, �17�

with Ỹm
ijkl as the tensors of anelastic coefficients and �m as

angular relaxation frequencies. The GMB frequency-
dependent viscoelastic modulus Cijkl��� can be derived by
inserting the Fourier transform of Eq. �17� into Eq. �16�:

Cijkl��� = cijkl − 

m=1

n

Ỹm
ijkl �m

i� + �m
. �18�

A second order discretization of Eq. �6� is implemented
in the rotated staggered grid algorithm. As a result the ane-

lastic functions 
m
ij and coefficients Ỹm

ijkl are located in the
center of an elementary FD cell at the same position as the
stress tensor �see Fig. 1�d� of Saenger et al., 2000�. The exact
position of a boundary between two different materials is
exactly the bound of the appendant elementary cells.

A compressible viscous fluid �i.e., Newtonian fluid� can
be characterized by the following frequency-dependent elas-
tic moduli:

C44��� = ���� = i���, �19�

C12��� = 
��� = 
�0� + i��
, �20�

with 
��� and ���� as angular-frequency dependent Lamé
parameters. For all examples in this paper we assume that the
dynamic fluid viscosity � is equal to �� and �
. However,
the key question is how to approximate the viscous behavior
given by Eqs. �19� and �20� with a GMB. The following
strategy is based on a Taylor expansion of Eq. �18� for �
=0:

• We use one relaxation mechanism �n=1�.
• Ỹ1

44=c44. Only in this case it is possible that C44�0�=0.
• In the low frequency range of the GMB for one relax-

ation mechanism one can determine the wanted fluid-
viscosity by using the following relations:

�� =
1

i
� �C44��,Ỹ1

44 = c44�
��

�
�=0

=
c44

�1
, �21�

�
 =
1

i
� �C12���

��
� =

Ỹ1
12

�1
. �22�
�=0
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• For ��=�
 one can show that Ỹ1
12=c44. Further, with

Eqs. �18�, �20�, and the known relation c11=c12+2c44

one can derive �for �=0�:

c11 = 
�0� + 3c44. �23�

• For FD approaches it is necessary to take into account
the stability criterion. For the rotated staggered grid
with FD operators of second order in time and space the
following relation is valid �Saenger et al. 2000�:

� c11

� fluid
= �p � �, � =

�h

�t
. �24�

• We choose c44 the following restriction �given by the
“stability criterion”-relation �24� and Eq. �23��:

c44 �
�2�fluid − 
�0�

3
. �25�

• Together with the choice of the angular relaxation fre-
quency �1 one can determine the wanted dynamic vis-
cosity � �compare with Eq. �21��.

• We choose a source signal in the low frequency range
of the applied GMB ��source��1�.

IV. NUMERICAL SIMULATIONS AND RESULTS

A. Numerical setup

To obtain effective velocities and attenuation coeffi-
cients in layered media we choose the following numerical
setup. The full synthetic model contains two horizontal thin
layers of viscous fluid and elastic solid of equal size �30
�3000 grid points with an interval of �x=0.0001 m for the
SH wave and �x=0.00001 m for the P wave�. The solid has
the P-wave velocity �p=5100 m/s, S-wave velocity �s

=2944 m/s, density �s=2540 kg/m3, and viscosity �
=0 kg/m s. For the viscous fluid we always set c11=3.922
�1011, c44=1.3�1011, and � f =1000 kg/m3. The fluid vis-
cosity � is varied with the choice of �1 �see Eq. �21��. To
generate a plane SH wave �Rickerl, fdom=50 kHz, �t=5e
−9 s� or a P-wave �Rickerl, fdom=500 kHz, �t=5e−10 s�,
we apply a line source in horizontal or vertical direction and
perform the finite-difference simulations with periodic
boundary conditions in the same direction. The effective ve-
locity is estimated by measuring the time of the zero crossing
of the plane wave over a distance of 1000 grid points. All
computations are carried out with the second order spatial
FD operators and with the second order time update.

To obtain attenuation coefficients from simulation data
we analyze the amplitude decaying with distance over one
wavelength. Based on the constant “Q” model �Knopoff,
1964; Pilant, 1979; Mavko et al., 1998� the attenuation 1/Q
reads

1

Q
= −

1

�
��A

A
�

LW

, �26�

where �A is the change in amplitude A over one wavelength
“LW.” This methodology is used to derive the attenuation
from the numerically simulated wave forms at the distance of

one wavelength.
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B. Numerical results

The results of shear wave simulations are summarized in
Figs. 2�a� and 2�b� which show the shear wave velocity and
attenuation plotted versus the fluid viscosity. The solid tri-
angles are simulations results, and the solid line is, the the-
oretical solution obtained by numerically solving the exact
dispersion equation �6�. Also shown are theoretical solution
in poroelastic �11� and viscoelastic �12� limits. We observe a
very good agreement between the full theoretical solutions
and the numerical simulations for almost the full range of
viscosities. Up until viscosity of about 3000 kg/ms the nu-
merical solution also agrees with poroelastic �Biot’s� solution
�11�, after which it tends to follow the viscoelastic solution
�12�. This latter effect is shown only for a relatively narrow
range of frequencies, as the viscoelastic solution is only valid
as long as the parameter � /�V=�� /�s is small, that is, for
viscosities ���s /�. At higher viscosities when the vis-
coelastic term begins to dominate, the waves become
strongly dispersive and our method of velocity estimation no

FIG. 2. Shear wave velocity �a� and attenuation �b� vs viscosity. The tri-
angles represent values of shear wave velocity obtained from numerical
simulations for models with different viscosity values. The cross-dotted line
corresponds to exact solution �6�, the solid line represents the poroelastic
solution �7�, and the dash-dotted line denotes the viscoelastic solution �12�.
longer applies. We did not focus on these high viscosities as
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they are unphysical �in the sense that Newtonian fluid model
is no longer valid, see Landau and Lifshitz, 1987�. The vis-
coelastic behavior is much more clearly visible on attenua-
tion than on the dispersion plot, since the first-order vis-
coelastic term in �12� is purely imaginary and therefore does
not contribute to the phase velocity.

Some discrepancies are observed for very low and very
high viscosities. These discrepancies cannot be explained by
numerical dispersion because we use over 500 grid points
per dominant wavelength. The discrepancy at low viscosity
is likely to be caused by insufficient sampling of the viscous
boundary layer near the solid/fluid interface. For instance, at
viscosity �=10 kg/ms and frequency 50 kHz, the thickness
of the boundary layer �viscous skin depth� is already about
�2� /�� f�1/2=2.5�10−4 m, or about less than three grid
points of the FD grid. Thus the value �=10 kg/m s is the
minimum value of viscosity for which the boundary layer is
adequately sampled. From a practical point of view this
gives a general physical accuracy condition for simulations
of wave propagation in viscoelastic media

� 2�

�� f
� 
�x; 
 
 3. �27�

In our setup this condition is not fulfilled at viscosities
lower than �=10 kg/m s, which causes the errors in attenu-
ation observed in Fig. 2�b�. Note also corresponding errors in
phase velocity �Fig. 2�a��; however, the velocity errors are
smaller. Again, as mentioned earlier, this accuracy condition
should not be mixed with the classical dispersion accuracy
condition derived for wave propagation in an elastic solid or
ideal fluid. The dispersion condition is discussed in detail for
the RSG in Saenger et al. �2000� and Saenger and Bohlen
�2004� and gives rules for a proper ratio of grid points per
wavelength. For pore-scale simulations this is typically not a
crucial condition because the main focus is on effective elas-
tic properties in the long wavelength limit. One needs several
grid points to discretize the pores properly ��30 grid points�
and the wavelength must be at least 10 times larger than the
pores. The resulting ratio of 300 or more grid points per
wavelength is therefore not crucial with respect to the nu-
merical dispersion.

To further investigate the relationship between the thick-
ness of the viscous solid/fluid boundary and the number of
grid points, the computation of shear velocities was per-
formed for different number of grid points and different size
of spatial steps. The results are summarized in Fig. 3. These
results demonstrate that insufficient spatial sampling causes
the observed velocity errors at low viscosities, in situations
when the viscous skin depth is small.

The results for P-wave dispersion and attenuation are
shown in Figs. 4�a� and 4�b�. The numerically simulated val-
ues of P-wave velocities �Fig. 4�a�� and inverse quality fac-
tor �Fig. 4�b�� are consistent with the exact solution. This
agreement is observed in a wide range of viscosities. A small
discrepancy appears at viscosities as low as ��0.1 kg/m s.
At these very low viscosities the very thin solid/fluid bound-
ary layer is still not properly discretized.

It is useful to note that Biot’s theory of poroelasticity

neglects the bulk viscosity of the pore fluid. Our numerical
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simulations include the effects of both bulk and shear vis-
cosities. The theoretical solution for shear waves includes
only the effect of shear viscosity. The good agreement be-
tween the numerical simulation and the theoretical attenua-
tion and dispersion proves the legitimacy of Biot’s assump-
tion as expected. For compressional waves Figs. 4�a� and
4�b� show solutions both with �Im 
 f =Im � f =−��� and
without �Im 
 f =0� bulk viscosity. We see that influence of
bulk viscosity on the dispersion and attenuation of compres-
sional waves is negligible in the poroelastic regime, and be-
comes significant only in the viscoelastic regime, again con-
firming Biot’s assumption.

V. CONCLUSIONS

The main result of this paper is an excellent agreement
between the numerical simulations and theoretical predic-
tions of shear and compressional wave velocities and attenu-
ation factors. This agreement is observed in a wide range of
fluid visocities. In the lower viscosity range the solution
shows excellent agreement with the poroelastic solution as
predicted by Biot’s theory of poroelasticity. At higher vis-
cocities the behavior of viscosities and, in particular, attenu-
ation factors is consistent with classical viscoelastic dissipa-
tion. This confirms that the viscoelastic rotated staggered
grid FD method of Saenger et al. �2005� is capable of mod-
eling both poroelastic �associated with global flow� and vis-
coelastic effects with high accuracy. The finite-difference
discretization required to achieve this accuracy must be suf-
ficiently fine to ensure adequate sampling of viscous bound-
ary layer near the pore wall. At least two grid points with
spatial distance less than the viscous skip depth are required
for the accurate computation. This can be regarded as general
�physical� accuracy condition for wave simulation on a mi-
croscale in presence of viscosity.
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