We present a first principle study about the stability and the electronic
properties of a new biomolecular solid-state material, obtained by the
self-assembling of guanine (G) molecules. We consider hydrogen-bonded planar
ribbons in isolated and stacked configurations. These aggregates present
electronic properties similar to inorganic wide-bandgap semiconductors. The
formation of Bloch-type orbitals is observed along the stacking direction,
while it is negligible in the ribbon plane. Global band-like conduction may be
affected by a dipole-field which spontaneously arises along the ribbon axis.
Our results indicate that G-ribbon assemblies are promising materials for
biomolecular nanodevices, consistently with recent experimental results.Comment: 7 pages, 3 figures, to be published in Physica