1,938 research outputs found

    Dynamics of a bubble formed in double stranded DNA

    Full text link
    We study the fluctuational dynamics of a tagged base-pair in double stranded DNA. We calculate the drift force which acts on the tagged base-pair using a potential model that describes interactions at base pairs level and use it to construct a Fokker-Planck equation.The calculated displacement autocorrelation function is found to be in very good agreement with the experimental result of Altan-Bonnet {\it et. al.} Phys. Rev. Lett. {\bf 90}, 138101 (2003) over the entire time range of measurement. We calculate the most probable displacements which predominately contribute to the autocorrelation function and the half-time history of these displacements.Comment: 11 pages, 4 figures. submitted to Phys. Rev. Let

    DNA nanotweezers studied with a coarse-grained model of DNA

    Full text link
    We introduce a coarse-grained rigid nucleotide model of DNA that reproduces the basic thermodynamics of short strands: duplex hybridization, single-stranded stacking and hairpin formation, and also captures the essential structural properties of DNA: the helical pitch, persistence length and torsional stiffness of double-stranded molecules, as well as the comparative flexibility of unstacked single strands. We apply the model to calculate the detailed free-energy landscape of one full cycle of DNA 'tweezers', a simple machine driven by hybridization and strand displacement.Comment: 4 pages, 5 figure

    Temperature-dependent poroelastic and viscoelastic effects on microscale—modelling of seismic reflections in heavy oil reservoirs

    Get PDF
    We develop a new model for elastic properties of rocks saturated with heavy oil. The heavy oil is represented by a viscoelastic material, which at low frequencies and/or high temperatures behaves as a Newtonian fluid, and at high frequencies and/or low temperatures as a nearly elastic solid. The bulk and shear moduli of a porous rock saturated with such viscoelastic material are then computed using approximate extended Gassmann equations of Ciz and Shapiro by replacing the elastic moduli of the pore filling material with complex and frequency-dependent moduli of the viscoelastic pore fill. We test the proposed model by comparing its predictions with numerical simulations based on a direct finite-difference solution of equations of dynamic viscoelasticity. The simulations are performed for the reflection coefficient from an interface between a homogeneous fluid and a porous medium. The numerical tests are performed both for an idealized porous medium consisting of alternating solid and viscoelastic layers, and for a more realistic 3-D geometry of the pore space. Both sets of numerical tests show a good agreement between the predictions of the proposed viscoelastic workflow and numerical simulations for relatively high viscosities where viscoelastic effects are important. The results confirm that application of extended Gassmann equations in conjunction with the complex and frequency-dependent moduli of viscoelastic pore filling material, such as heavy oil, provides a good approximation for the elastic moduli of rocks saturated with such material. By construction, this approximation is exactly consistent with the classical Gassmann's equation for sufficiently low frequencies or high temperature when heavy oil behaves like a fluid. For higher frequencies and/or lower temperatures, the predictions are in good agreement with the direct numerical solution of equations of dynamic viscoelasticity on the microscale. This demonstrates that the proposed methodology provides realistic estimates of elastic properties of heavy oil rock

    Self-assembled guanine ribbons as wide-bandgap semiconductors

    Full text link
    We present a first principle study about the stability and the electronic properties of a new biomolecular solid-state material, obtained by the self-assembling of guanine (G) molecules. We consider hydrogen-bonded planar ribbons in isolated and stacked configurations. These aggregates present electronic properties similar to inorganic wide-bandgap semiconductors. The formation of Bloch-type orbitals is observed along the stacking direction, while it is negligible in the ribbon plane. Global band-like conduction may be affected by a dipole-field which spontaneously arises along the ribbon axis. Our results indicate that G-ribbon assemblies are promising materials for biomolecular nanodevices, consistently with recent experimental results.Comment: 7 pages, 3 figures, to be published in Physica

    Competition for hydrogen bond formation in the helix-coil transition and protein folding

    Get PDF
    The problem of the helix-coil transition of biopolymers in explicit solvents, like water, with the ability for hydrogen bonding with solvent is addressed analytically using a suitably modified version of the Generalized Model of Polypeptide Chains. Besides the regular helix-coil transition, an additional coil-helix or reentrant transition is also found at lower temperatures. The reentrant transition arises due to competition between polymer-polymer and polymer-water hydrogen bonds. The balance between the two types of hydrogen bonding can be shifted to either direction through changes not only in temperature, but also by pressure, mechanical force, osmotic stress or other external influences. Both polypeptides and polynucleotides are considered within a unified formalism. Our approach provides an explanation of the experimental difficulty of observing the reentrant transition with pressure; and underscores the advantage of pulling experiments for studies of DNA. Results are discussed and compared with those reported in a number of recent publications with which a significant level of agreement is obtained.Comment: 21 pages, 3 figures, submitted to Phys Rev

    Dynamic cluster-scaling in DNA

    Full text link
    It is shown that the nucleotide sequences in DNA molecules have cluster-scaling properties (discovered for the first time in turbulent processes: Sreenivasan and Bershadskii, 2006, J. Stat. Phys., 125, 1141-1153.). These properties are relevant to both types of nucleotide pair-bases interactions: hydrogen bonds and stacking interactions. It is shown that taking into account the cluster-scaling properties can help to improve heterogeneous models of the DNA dynamics. Two human genes: BRCA2 and NRXN1, have been considered as examples

    Thermomechanics of DNA

    Full text link
    A theory for thermomechanical behavior of homogeneous DNA at thermal equilibrium predicts critical temperatures for denaturation under torque and stretch, phase diagrams for stable B--DNA, supercoiling, optimally stable torque, and the overstretching transition as force-induced DNA melting. Agreement with available single molecule manipulation experiments is excellent.Comment: 4 pages, 5 figures. Lette

    Self-energy limited ion transport in sub-nanometer channels

    Full text link
    The current-voltage characteristics of the alpha-Hemolysin protein pore during the passage of single-stranded DNA under varying ionic strength, C, are studied experimentally. We observe strong blockage of the current, weak super-linear growth of the current as a function of voltage, and a minimum of the current as a function of C. These observations are interpreted as the result of the ion electrostatic self-energy barrier originating from the large difference in the dielectric constants of water and the lipid bilayer. The dependence of DNA capture rate on C also agrees with our model.Comment: more experimental material is added. 4 pages, 7 figure

    Cluster-scaling, chaotic order and coherence in DNA

    Full text link
    Different numerical mappings of the DNA sequences have been studied using a new cluster-scaling method and the well known spectral methods. It is shown, in particular, that the nucleotide sequences in DNA molecules have robust cluster-scaling properties. These properties are relevant to both types of nucleotide pair-bases interactions: hydrogen bonds and stacking interactions. It is shown that taking into account the cluster-scaling properties can help to improve heterogeneous models of the DNA dynamics. It is also shown that a chaotic (deterministic) order, rather than a stochastic randomness, controls the energy minima positions of the stacking interactions in the DNA sequences on large scales. The chaotic order results in a large-scale chaotic coherence between the two complimentary DNA-duplex's sequences. A competition between this broad-band chaotic coherence and the resonance coherence produced by genetic code has been briefly discussed. The Arabidopsis plant genome (which is a model plant for genome analysis) and two human genes: BRCA2 and NRXN1, have been considered as examples.Comment: extended. arXiv admin note: substantial text overlap with arXiv:1008.135
    • …
    corecore