12 research outputs found
Effect of Intermediate-Dose vs Standard-Dose Prophylactic Anticoagulation on Thrombotic Events, Extracorporeal Membrane Oxygenation Treatment, or Mortality among Patients with COVID-19 Admitted to the Intensive Care Unit: The INSPIRATION Randomized Clinical Trial
Importance: Thrombotic events are commonly reported in critically ill patients with COVID-19. Limited data exist to guide the intensity of antithrombotic prophylaxis. Objective: To evaluate the effects of intermediate-dose vs standard-dose prophylactic anticoagulation among patients with COVID-19 admitted to the intensive care unit (ICU). Design, Setting, and Participants: Multicenter randomized trial with a 2 � 2 factorial design performed in 10 academic centers in Iran comparing intermediate-dose vs standard-dose prophylactic anticoagulation (first hypothesis) and statin therapy vs matching placebo (second hypothesis; not reported in this article) among adult patients admitted to the ICU with COVID-19. Patients were recruited between July 29, 2020, and November 19, 2020. The final follow-up date for the 30-day primary outcome was December 19, 2020. Interventions: Intermediate-dose (enoxaparin, 1 mg/kg daily) (n = 276) vs standard prophylactic anticoagulation (enoxaparin, 40 mg daily) (n = 286), with modification according to body weight and creatinine clearance. The assigned treatments were planned to be continued until completion of 30-day follow-up. Main Outcomes and Measures: The primary efficacy outcome was a composite of venous or arterial thrombosis, treatment with extracorporeal membrane oxygenation, or mortality within 30 days, assessed in randomized patients who met the eligibility criteria and received at least 1 dose of the assigned treatment. Prespecified safety outcomes included major bleeding according to the Bleeding Academic Research Consortium (type 3 or 5 definition), powered for noninferiority (a noninferiority margin of 1.8 based on odds ratio), and severe thrombocytopenia (platelet count <20 �103/µL). All outcomes were blindly adjudicated. Results: Among 600 randomized patients, 562 (93.7) were included in the primary analysis (median interquartile range age, 62 50-71 years; 237 42.2% women). The primary efficacy outcome occurred in 126 patients (45.7%) in the intermediate-dose group and 126 patients (44.1%) in the standard-dose prophylaxis group (absolute risk difference, 1.5% 95% CI,-6.6% to 9.8%; odds ratio, 1.06 95% CI, 0.76-1.48; P =.70). Major bleeding occurred in 7 patients (2.5%) in the intermediate-dose group and 4 patients (1.4%) in the standard-dose prophylaxis group (risk difference, 1.1% 1-sided 97.5% CI,-� to 3.4%; odds ratio, 1.83 1-sided 97.5% CI, 0.00-5.93), not meeting the noninferiority criteria (P for noninferiority >.99). Severe thrombocytopenia occurred only in patients assigned to the intermediate-dose group (6 vs 0 patients; risk difference, 2.2% 95% CI, 0.4%-3.8%; P =.01). Conclusions and Relevance: Among patients admitted to the ICU with COVID-19, intermediate-dose prophylactic anticoagulation, compared with standard-dose prophylactic anticoagulation, did not result in a significant difference in the primary outcome of a composite of adjudicated venous or arterial thrombosis, treatment with extracorporeal membrane oxygenation, or mortality within 30 days. These results do not support the routine empirical use of intermediate-dose prophylactic anticoagulation in unselected patients admitted to the ICU with COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04486508. © 2021 American Medical Association. All rights reserved
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. Methods: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. Findings: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. Interpretation: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed. Funding: Bill & Melinda Gates Foundation
Recommended from our members
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background
Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.
Methods
We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.
Findings
Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.
Interpretation
As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed.
Funding
Bill & Melinda Gates Foundation
Scenario tree generation for the optimization model of a parking lot for electric vehicles
This paper deals with a procedure capable to build the scenario tree associated with a parking lot equipped with several bidirectional charging stations for plug-in electric vehicles (EVs). The scenario tree is conceived to be implemented in multistage stochastic optimization models for day-Ahead energy management systems of microgrids or, more in general, power distribution networks. Specific operating rules relevant to the initial energy available in the cars entering the parking lot are defined, as well as the other typical constraints (such as maximum number of available charging stations, size of the EVs batteries, and power ratings of charging stations). Moreover, the model reproduces also the coupling between the operation of the parking lot with the power production of a photovoltaic unit. The tree generation procedure at first generates a number of equiprobable scenarios by using day-Ahead forecasts and the probability distributions characterizing the expected deviations with respect to the forecasts; then similar scenarios are grouped on the basis of the chosen criteria and of the number of stages. A specific procedure is finally proposed and applied in order to guarantee the existence of feasible solutions
Scenario tree generation for the optimization model of a parking lot for electric vehicles
This paper deals with a procedure capable to build the scenario tree associated with a parking lot equipped with several bidirectional charging stations for plug-in electric vehicles (EVs). The scenario tree is conceived to be implemented in multistage stochastic optimization models for day-Ahead energy management systems of microgrids or, more in general, power distribution networks. Specific operating rules relevant to the initial energy available in the cars entering the parking lot are defined, as well as the other typical constraints (such as maximum number of available charging stations, size of the EVs batteries, and power ratings of charging stations). Moreover, the model reproduces also the coupling between the operation of the parking lot with the power production of a photovoltaic unit. The tree generation procedure at first generates a number of equiprobable scenarios by using day-Ahead forecasts and the probability distributions characterizing the expected deviations with respect to the forecasts; then similar scenarios are grouped on the basis of the chosen criteria and of the number of stages. A specific procedure is finally proposed and applied in order to guarantee the existence of feasible solutions
Optimal operation of vehicle-to-grid and grid-to-vehicle systems integrated with renewables
Bidirectional public charging stations of plug-in electric-vehicles (PEVs) are expected to provide both grid-to-vehicle and vehicle-to-grid services. The flexibility of the operation of these types of distributed energy resources can be exploited through time-of-use (TOU) tariffs dictated by distribution system operators and/or retailers. This paper focuses on the integration of these resources with distributed renewable in an industrial site in order to lower the energy procurement costs. Stochastic programming is used to characterize the uncertainties involved in PEVs arrivals and departures, their arrival and desired departure states of charge, as well as the uncertainties of the generation by renewables. A test case is presented in order to illustrate the impact of the integration on power profiles and procurement costs for different ratios of sale to purchase tariffs