7 research outputs found

    Electric microfield distributions and structure factors in dense plasmas

    Get PDF
    Die elektrischen Mikrofeldverteilungen (EMDs) und ihre Auswüchse wurden in einkomponentiger (OCP) Elektron-, zweikomponentigen (TCP) Elektron-Positron-, Wasserstoff- und einwertig ionisierten Alkaliplasmen im Rahmen verschiedener Pseudopotentialmodelle (PM) untersucht und mit sowohl Molekulardynamik (MD) und Monte-Carlo Simulationen als auch mit Experimenten vergliechen. Die verwendeten theoretischen Verfahren zur Berechnung von EMDs gehen zurück auf die von C. A. Iglesias entwickelte Kopplungsparameter Integrationstechnik (KPIT) für OCP und die von J. Ortner et al. vorgeschlagene verallgemeinerte KPIT für TCP. EMDs wurden im Rahmen der abgeschirmten Kelbg-, Deutsch-, Hellmann-Gurskii-Krasko(HGK)-PM untersucht, welche quantenmechanische Effekte, Abschirmungseffekte und die Struktur der Ionenrümpfe (HGK) berücksichtigen. Die Abschirmungseffekte wurden auf Grundlage der Bogoljubov-Born-Green-Kirkwood-Yvon- Methode eingeführt. Wir haben das abgeschirmte HGK-Pseudopotential in der Debye-Näherung sowie in einer mäßig gekoppelten Plasma-Näherung verwendet. Wir haben verschiedene Typen vom asymptotischen Verhalten der Verteilungsauswüchse in Abhangigheit von Plasmaparameter, Plasmatypen und Strahler bestimmt. Der Vergleich der experimentell gewonnenen Daten mit sowohl einem synthetischen Li2+-Lyman-Spektrum als auch mit einer synthetischen Li II 548 nm Linie lassen den Schluss zu, daß die EMD, welche auf der Grundlage der Iglesias-Methode für OCP im HGK-PM und der MD erhalten wurde, eine gute Übereinstimmung mit den experimentellen Werten liefert. Die statischen partiellen und Ladung-Ladung-Strukturfaktoren (SSF) wurden für Alkali- und Be2+-Plasmen unter Verwendung der von G. Gregori et al. beschriebenen Methode berechnet. Die dynamischen Strukturfaktoren (DSF) für Alkaliplasmen wurden unter Verwendung der durch V. M. Adamyan et al. entwickelten Methode der Momente berechnet. Bei beiden Methoden wurde das abgeschirmte HGK-Pseudopotential verwendet.The electric microfield distributions (EMDs) and its tails have been studied for electron one-component plasma (OCP), electron-positron, hydrogen and single-ionized alkali two-component plasmas (TCP) in a frame of different pseudopotential models (PM) and compared with Molecular Dynamics (MD) and Monte-Carlo simulations as well as with experiments. The theoretical methods used for calculation of EMDs are a coupling-parameter integration technique (CPIT) developed by C. A. Iglesias for OCP and the generalized CPIT proposed by J. Ortner et al. for TCP. We studied the EMDs in a frame of the screened Kelbg, Deutsch, Hellmann-Gurskii-Krasko (HGK) PMs which take into account quantum-mechanical, screening effects and the ion shell structure (HGK) due to the Pauli exclusion principle. The screening effects were introduced on a base of Bogoljubov-Born-Green-Kirkwood-Yvon method. We used the screened HGK pseudopotential in the Debye approximation as well as in a moderately coupled plasma approximation. The influence of the plasma coupling parameter on the EMD along with the ion shell structure was investigated. We determined different types of asymptotic behaviour of EMD tails in dependence on the plasma type, parameters and radiator. Comparison of a synthetic Li2+ Lyman spectrum as well as comparison of a synthetic Li II 548 nm line with experimental data allows us to conclude that the EMD, obtained on a base of the CPIT method for OCP within the HGK PM and MD, provides a good agreement with the experiment. We have calculated the partial and charge-charge static structure factors (SSF) for alkali and Be2+ plasmas using the method described by G. Gregori et al.. We have calculated the dynamic structure factors (DSF) for alkali plasmas using the method of moments developed by V. M. Adamyan et al. In both methods the screened HGK pseudopotential has been used

    Double Relativistic Electron Accelerating Mirror

    No full text
    In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema)

    A New Scheme for High-Intensity Laser-Driven Electron Acceleration in a Plasma

    No full text
    We propose a new approach to high-intensity relativistic laser-driven electron acceleration in a plasma. Here, we demonstrate that a plasma wave generated by a stimulated forward-scattering of an incident laser pulse can be in the longest acceleration phase with injected relativistic beam electrons. This is why the plasma wave has the maximum amplification coefficient which is determined by the acceleration time and the breakdown (overturn) electric field in which the acceleration of the injected beam electrons occurs. We must note that for the longest acceleration phase the relativity of the injected beam electrons plays a crucial role in our scheme. We estimate qualitatively the acceleration parameters of relativistic electrons in the field of a plasma wave generated at the stimulated forward-scattering of a high-intensity laser pulse in a plasma

    Laser Plasma Acceleration: amplification of a laser induced plasma wave and electron trapping

    No full text
    The idea to accelerate the charged particles in a plasma medium using collective plasma fields belongs to Budker, Veksler, and Fainberg. Later on, another acceleration schemes were proposed including the laser plasma acceleration. In our earlier work we studied the possibility of employment of ultrarelativistic monoenergetic electron and proton bunches for generation of high plasma wakefields in dense plasmas due to Cherenkov resonance plasma- bunch interaction. We estimated various paramaters at which the maximum amplitude can be generated at the given plasma and bunch parameters [1]. In our present work, we discuss another scheme of amplification of a plasma wave using a laser at the qualitative level. Namely, we make an estimation of plasma, injected electron bunch parameters, maximum amplitude of the generated electric field, determine condition for the electron trapping by the laser-induced plasma wave at which the maximum electron acceleration energy can be gained. As the basis parameters we use those set in plasma acceleration experiment at SPARC_LAB facility of INFN-LNF, Frascati, Italy, with external electron Injection [2]. [1] A. A. Rukhadze and S. P. Sadykova, Phys. Rev. ST Accel. Beams 15, 041302 (2012); [2] A. R. Rossi, et al.,Proceedings of IPAC2012, USA,WEEPPB00

    A New Scheme for High-Intensity Laser-Driven Electron Acceleration in a Plasma

    No full text
    We propose a new approach to high-intensity relativistic laser-driven electron acceleration in a plasma. Here, we demonstrate that a plasma wave generated by a stimulated forward-scattering of an incident laser pulse can be in the longest acceleration phase with injected relativistic beam electrons. This is why the plasma wave has the maximum amplification coefficient which is determined by the acceleration time and the breakdown (overturn) electric field in which the acceleration of the injected beam electrons occurs. We must note that for the longest acceleration phase the relativity of the injected beam electrons plays a crucial role in our scheme. We estimate qualitatively the acceleration parameters of relativistic electrons in the field of a plasma wave generated at the stimulated forward-scattering of a high-intensity laser pulse in a plasma
    corecore