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Abstract

In this Ph.D. thesis we study the electric microfield distributions (EMDs) and
its tails for electron, electron-positron, hydrogen H+ and single-ionized alkali (Li+,
Na+, K+, Rb+, Cs+) plasmas in a frame of different pseudopotential models. We
also study the static and dynamic structure factors for alkali and Be2+ plasmas.
We pay special attention to inclusion of the ion shell structure into the studied
phenomena.
We have calculated the EMDs for electron-positron plasmas at the location

of an electron and a neutral point, for hydrogen and single-ionized alkali two-
component plasmas (TCP) at the location of an ion and for electron one-component
plasmas (OCP) at the location of an electron and a neutral point. The theoretical
methods used for calculation of EMDs are a coupling-parameter integration technique
developed by C. A. Iglesias (Iglesias, 1983) for OCP and the generalized coupling-
parameter integration technique proposed by J. Ortner et al. (Ortner et al., 2000)
for TCP. We studied the EMDs in a frame of the screened Kelbg, Deutsch, Hellmann-
Gurskii-Krasko (HGK) pseudopotential models which take into account quantum-
mechanical (diffraction, quantum symmetry effects, Pauli exclusion principle) and
screening effects. The screened HGK model takes into account the ion shell structure
due to the Pauli exclusion principle (Sadykova et al., 2009a). The repulsive part of
the HGK pseudopotential reflects important features of the ion shell structure. The
screening effects were introduced on a base of Bogoljubov’s works (Bogoljubov-Born-
Green-Kirkwood-Yvon (BBGKY)) described in (Bogoljubov, 1946, 1962). We used
the screened HGK pseudopotential in the Debye approximation as well as in a higher
order screening approximation valid also for a moderately coupled plasma, both were
derived in (Sadykova et al., 2009a). The moderately coupled plasma approximation
compared to the Debye approximation makes a considerable improvement in the
EMD calculation at moderate magnitudes of ion-ion coupling parameter Γii. We have
derived a new type of the screened HGK pseudopotential, where for electron-electron
interaction we used the corrected Kelbg micro-pseudopotential instead of earlier
applied Deutsch micro-pseudopotential. We have obtained the analytical expressions
for the screened Deutsch pseudopotentials (Arkhipov et al., 2000) through the
inverse Fourier transformation in “r”-space neglecting the symmetry effects and
ionic screening. The influence of the coupling parameter on the EMD along with the
ion shell structure was investigated. For comparison the corresponding EMDs for
H+-plasmas were given too. In this case no ion shell exists and we may see clearly
the influence of the shell structure. We have performed the Molecular Dynamics and
Monte-Carlo simulations of nonideal electron-positron, hydrogen and alkali TCPs
as well as electron OCPs and determined the EMDs measured at an electron, ion
and at a neutral point as depending on the electron-electron coupling parameter
Γee in the range 0.2 ≤ Γee ≤ 2 at T = 30 000 K. The results were found in a good
agreement with the Monte-Carlo and Molecular Dynamics simulation results. We
pay a special attention to the behaviour of the distribution tails. We show that at
low Γee � 1 the tails of the EMDs at an electron in OCP, TCP and at an ion in TCP
follow a pattern compatible with the Levy-type of distribution (P (β) ∼ β−α−1).
The tails of the EMDs at a neutral point at Γee ≤ 2 follow a pattern compatible
with the Holtsmark one (α = 3/2) also belonging to the Levy-type of distribution.
At higher values of Γee and higher fields β >> 1 the tails of EMDs at an electron
in electron and electron-positron plasmas as well as at an ion in hydrogen plasma
are considerably fatter and follow the modified power-exponential Potekhin form
(Sadykova et al., 2009b) whereas in alkali plasmas the relatively fast decay is observed
which follow the power-exponential Potekhin form (Potekhin et al., 2002). At values
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0.2 ≤ Γee ≤ 1.2 the tails measured at an electron in electron-positron plasma can be
roughly approximated by the decay exponents (α′ = α+ 1) corresponding to the
Levy-type of distribution changing from −2.2 to −1.8 with increasing Γee.
Comparison of a synthetic Li2+-Lyman spectrum at T = 300 000 K and ne =

4 · 1019 cm−3 (Lorenzen et al., 2008, 2009) with experimental data (Schriever et al.,
1998a) as well as comparison of a synthetic Li+ (Li II 548 nm) line at T = 38 527 K
and ne = 0.22 · 1018 cm−3 (Koubiti et al., 2011) with the experimental data (Doria
et al., 2006) allows us to conclude that the EMD, as an input value of the line profile,
obtained in the present work on a base of C. A. Iglesias method for OCP within the
HGK pseudopotential model and Molecular Dynamics, provides a good agreement
with the experiment.

We have calculated the electron-electron, electron-ion, ion-ion and charge-charge
static structure factors for alkali Li+, Na+, K+, Rb+, Cs+ (at T = 30 000 K, 60 000
K, ne = 0.7 · 1021 ÷ 1.1 · 1022 cm−3) and Be2+ (at T = 20 eV, ne = 2.5 · 1023 cm−3)
plasmas using the method described by G. Gregori et al. (Gregori et al., 2006b, 2007).
We have calculated the dynamic structure factors for alkali plasmas at T = 30 000K,
ne = 1.74 · 1020, 1.11 · 1022 cm−3 using the method of moments developed by V. M.
Adamyan et al. (Adamyan and Tkachenko, 1983; Adamjan et al., 1993). In both
methods the screened HGK pseudopotential has been used. Our results on the static
structure factors for Be2+ plasma deviate from the data obtained by G. Gregori et
al., while our dynamic structure factors are in a reasonable agreement with those of
S. V. Adamjan et al. determined within the Coulomb hydrogen-like point charges
potential model: at higher values of k and with increasing k the curves damp down
while at lower values of k, and especially at higher electron coupling, we observe
sharp peaks also reported in the mentioned work. For lower electron coupling the
dynamic structure factors of alkali plasmas do not differ while at higher electron
coupling these curves split. As the number of shell electrons increases from Li+ to
Cs+ the curves shift in the direction of low absolute value of ω and their heights
diminish. We conclude that the short range forces, which we take into account by
means of the HGK pseudopotential, which deviates from the Coulomb and Deutsch
ones, influence the static and dynamic structure factors significantly.
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Zusammenfassung

Diese Doktorarbeit widmet sich den elektrischen Mikrofeldverteilungen (EMDs)
und ihren Auswüchsen in Elektron-, Elektron-Positron-, Wasserstoff-H+ und einwer-
tig ionisierten Alkaliplasmen (Li+, Na+, K+, Rb+, Cs+) im Rahmen verschiedener
Pseudopotentialmodelle. Außerdem untersuchen wir die statischen und dynamischen
Strukturfaktoren in Alkali- und Be2+-Plasmen. Wir konzentrieren uns insbesondere
darauf, die Ionenrümpfe in die untersuchten Phänomene einzubeziehen.

Die EMDs sind für Elektron-Positron-Plasmen an der Stelle eines Elektrons und
an einer neutralen Stelle, für Wasserstoff und einwertig ionisierte zweikomponentige
(TCP) Alkaliplasmen an der Stelle eines Ions und für einkomponentige (OCP) Elek-
tronenplasmen an der Stelle eines Elektrons und an einer neutralen Stelle berechnet
worden. Die verwendeten theoretischen Verfahren zur Berechnung von EMDs gehen
zurück auf die von C. A. Iglesias (Iglesias, 1983) entwickelte Kopplungsparameter
Integrationstechnik für OCP und die von J. Ortner et al. (Ortner et al., 2000)
vorgeschlagene verallgemeinerte Kopplungsparameter Integrationstechnik für TCP.
EMDs wurden im Rahmen der abgeschirmten Kelbg-, Deutsch-, Hellmann-Gurskii-
Krasko-Pseudopotenialmodelle untersucht, welche quantenmechanische (Beugung,
quantensymmetrische Effekte, Paulisches Ausschlussprinzip) und Abschirmungsef-
fekte berücksichtigen. Das abgeschirmte HGK-Pseudopotenialmodell berücksichtigt
außerdem die Struktur der Ionenrümpfe auf Grund des Paulischen Ausschlussprinzips
(Sadykova et al., 2009a). Der abstoßende Teil des HGK-Pseudopotenials spiegelt
wichtige Eigenschaften der ionischen Rumpfstruktur wider. Die Abschirmungseffek-
te wurden auf Grundlage der Arbeiten von Bogoljubov (Bogoljubov-Born-Green-
Kirkwood-Yvon (BBGKY)) eingeführt, in (Bogoljubov, 1946, 1962) beschrieben.
Wir haben das abgeschirmte HGK-Pseudopotential in der Debye-Näherung so-
wie eine Abschirmungsnäherung in höherer Ordnung verwendet, welche auch für
mäßig gekoppelte Plasmen gültig ist; beide sind in (Sadykova et al., 2009a) her-
geleitet worden. Im Vergleich zur Debye-Näherung sorgt die mäßig gekoppelte
Plasma-Näherung zu einer beträchtlichen Verbesserung in der EMD Berechnung bei
mittelgroßen Ion-Ion-Kopplungsparametern Γii. Wir haben eine neue Art von abge-
schirmtem HGK-Pseudopotential hergeleitet, bei dem wir für die Elektron-Elektron-
Wechselwirkung statt dem zuvor angewendeten Deutsch-Mikro-Pseudopotential das
korrigierte Kelbg-Mikro-Pseudopotential verwendet haben. Für das abgeschirmte
Deutsch-Pseudopotential (Arkhipov et al., 2000) haben wir die analytischen Aus-
drücke durch inverse Fouriertransformation im “r”-Raum unter Vernachlässigung
der Symmetrieeffekte und der ionischen Abschirmung erhalten. Der Einfluss des
Kopplungsparameters auf die EMDs zusammen mit der ionischen Rumpfstruktur
wurde untersucht. Zum Vergleich wurden auch die entsprechenden EMDs für H+-
Plasmen gezeigt. In diesem Fall existiert kein Ionenrumpf und wir können deutlich
den Einfluss der Rumpfstruktur erkennen. Wir haben die Molekulardynamik und
Monte-Carlo Simulationen von nicht idealen Elektron-Positron-, Wasserstoff- und
Alkali-TCPs sowie Elektron-OCPs durchgeführt und die Abhängigheit vom Elektro-
Elektron-Kopplungsparameter Γee im Bereich 0.2 ≤ Γee ≤ 2 bei T = 30 000 K der an
der Stelle eines Elektrons, eines Ions und an einer neutralen Stelle gemessenen EMDs
bestimmt. Die Ergebnisse stimmen mit den Simulationsergebnissen aus der Moleku-
lardynamik und Monte-Carlo gut überein. Wir legen unseren Fokus insbesondere auf
das Verhalten der Verteilungsauswüchse. Wir zeigen, daß für niedrige Γee � 1 die
Auswüchse der EMDs bei einem Elektron in OCP, TCP und bei einem Ion in TCP
einem Muster folgen, welches zu den Levyformigen Verteilungen (P (β) ∼ β−α−1)
gehört. Die Auswüchse der EMDs an einer neutralen Stelle für Γee ≤ 2 folgen einem
Muster, welches zu Holtsmark passt (α = 3/2), das ebenfalls zu den Levyformigen



Verteilungen gehört. Für höhere Γee-Werte und höhere Felder (β >> 1) die Aus-
wüchse der EMDs bei einem Elektron in Elektron- und Elektron-Positron-Plasmen
und einem Ion in Wasserstoffplasma beträchtlich dicker sind und der modifizierten
Potenz-Exponential Potekhin-Form (Sadykova et al., 2009b) folgen, wohingegen
in Alkaliplasmen ein relativ schneller Abfall beobachtet wird, welcher der Potenz-
Exponential Potekhin-Form (Potekhin et al., 2002) folgt. Für 0.2 ≤ Γee ≤ 1.2-Werte
können die bei einem Elektron in Elektron-Positron-Plasma gemessenen Auswüch-
se grob durch die Abfallexponenten (α′ = α+ 1) entsprechend der Levyformigen
Verteilung genähert werden, welche sich von −2.2 bis −1.8 mit anwachsenden Γee
ändern.
Der Vergleich der experimentell gewonnenen Daten (Schriever et al., 1998a)

mit sowohl einem synthetischen Li2+-Lyman-Spektrum bei T = 30 0000 K und
ne = 4 · 1019 cm−3 (Lorenzen et al., 2008, 2009) als auch mit einer synthetischen
Li+ (Li II 548 nm) Linie bei T = 38 527 K und ne = 0.22 · 1018 cm−3 (Koubiti
et al., 2011) lassen den Schluss zu, daß die EMD als ein Eingabewert für das Linien-
profil, welche in der vorliegenden Arbeit auf der Grundlage der Iglesias-Methode im
HGK-Pseudopotentialmodell und der Molekulardynamik erhalten wurde, eine gute
Übereinstimmung mit den experimentellen Werten liefert.
Die statischen Elektron-Elektron-, Elektron-Ion-, Ion-Ion-, und Ladung-Ladung-

Strukturfaktoren wurden für Alkali- Li+, Na+, K+, Rb+,Cs+ (T = 30 000 K,
60 000 K, ne = 0.7 · 1021 ÷ 1.1 · 1022 cm−3) und Be2+- (T = 20 eV, ne = 2.5 · 1023

cm−3) Plasmen unter Verwendung der von G. Gregori et al. (Gregori et al., 2006b,
2007) beschriebenen Methode berechnet. Die dynamischen Strukturfaktoren für
Alkaliplasmen wurden bei T = 30 000K, ne = 1.74 · 1020, 1.11 · 1022 cm−3 unter Ver-
wendung der durch V. M. Adamyan et al. (Adamyan and Tkachenko, 1983; Adamjan
et al., 1993) entwickelten Methode der Momente berechnet. Bei beiden Methoden
wurde das abgeschirmte HGK-Pseudopotential verwendet. Unsere Ergebnisse für
die statischen Strukturfaktoren für Be2+-Plasmen weichen von den Werten ab, die
G. Gregori et al. erhalten haben, während unsere dynamischen Strukturfaktoren in
ordentlicher Übereinstimmung mit denen von S.V. Adamjan et al., die auf der Basis
des Coulombschen Wasserstoffähnlichen Punktladungsmodells bestimmt wurden,
sind: fur höhere Werte von k und mit wachsenden k werden die Kurven gedämpft,
während wir für niedrige Werte von k und insbesondere bei höherer Elektronenkopp-
lung scharfe Spitzen beobachten, die auch in der besagten Arbeit erwähnt wurden.
Bei niedrigerer Elektronenkopplung weichen die dynamischen Strukturfaktoren von
Alkaliplasmen nicht ab, während sich bei höherer Elektronenkopplung diese Kur-
ven aufteilen. Wenn die Anzahl an Rumpf-Elektronen von Li+ to Cs+ anwächst,
verschieben sich die Kurven in Richtung kleiner absoluter ω-Werte und ihre Höhen
verringern sich. Wir folgern, daß die kurzreichweitigen Kräfte, welche wir unter Zuhil-
fenahme des HGK-Pseudopotentials berücksichtigen, des von der Coulomb-Potential
und Deutsch-Pseudopotential abweichenden HGK-Pseudopotentials die statischen
und dynamischen Strukturfaktoren beträchtlich beeinflussen.
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1 Introduction

1.1 Some facts about plasma and its parameters
Plasma is called the fourth state of matter. The other states are solids, liquids, and gases.
Over 99% of the universe is believed to be plasma. Atoms and molecules, constituting
the ordinary matter, are made up of nuclei and electrons. An electron has a negative
charge (e = 1.602176487(40) · 10−19 Coulombs (C)). Ions produced by removing some
or all of the orbital electrons become positively charged. A system of many such free
charged particles forms a plasma.
Matter in the plasma state spans a wide range of physical regimes and phenomena

including electric discharges, metals, semiconductors, the core, corona of the sun, white
dwarfs, interstellar space, magnetic and inertial fusion, ionosphere etc. Plasmas can
be produced in the laboratory by electric discharge. When a strong electric field is
applied to an ordinary gas, charged particles in it get accelerated and ionize these neutral
particles. Those newly born ions and electrons in its turn ionize other neutral particles
by collisions leading to an avalanche. The electric discharge is found commonly in our
daily life such as in the fluorescent lamp, neon tube, and arc welding.

Without using an electric discharge, a plasma state may be attained by simply raising
the temperature of a neutral gas and thermal ionization occurs.
Metals or semiconductors contain relatively mobile free charged particles. For instance,

one can find conduction electrons in metal forming a quantum-mechanically degenerate
plasma at a density of approximately 1023 cm−3. A semiconductor contains substantially
smaller number of mobile electrons and holes compared to metals.
Today, there is a high interest in the controlled thermonuclear fusion induced by the

search for a new alternative source of energy. There are two types of it: inertial con-
finement fusion (ICF) and magnetic confinement fusion (MCF) (Tokamak, Stellarator).
The energy can be produced through the release of energy during the fusion process
between light nuclei of hydrogen isotopes such as deuterium and tritium. In order to
induce the nuclear fusion reactions, the Coulomb repulsive forces must be overcome by
vigorous collisions between the nuclei. The minimum conditions for net production of
energy by a magnetic confinement scheme are estimated to be dense, high-temperature
plasmas of 1014 to 1015 cm−3 and ∼ 108 K held for more than one second (Ichimaru,
1992).

Above the surface of the Earth, layers of ionized gas, called the ionosphere, exist at
altitude of 70 to 500 km over the stratosphere. The highest electron density can be found
at the upper layers and its value is approximately 106 cm−3, and electron temperature
is about 2000 K. However, these values depend on seasons and solar activities.
The Sun itself is an important source of plasma. It has a region containing solar

atmosphere called the chromosphere (∼ 2000 km in depth). The average electron density
of such plasma is from 1010 cm−3 to 1011 cm−3 and temperature ∼ 6000 K. Above the
chromosphere a large region of corona extends. At 105 km from the solar surface, the

1



1 Introduction

electron density and temperature are estimated as 108 cm−3 and 106 K; at 106 km, they
are 106 cm−3 and 106 K respectively.
The interior of a white dwarfs, one of the final stages of stellar evolution, consists of

dense matter with electron density 1025 cm−3 to 1032 cm−3, and temperature 107 to 108

K. At such high density the plasma is degenerate and strongly correlated.
Finally, we mention the interstellar space among the stars. This plasma is dilute and

the typical electron densities range is from 10−2 cm−3 to 101 cm−3, and the temperature
∼ 104 K.
As a summary we show a schematic presentation of the parameter domains for de-

scribed above plasmas in Fig. 1.1.
As we have overviewed above, the plasmas found in nature or in the laboratory are
characterized by a wide range of temperature and density parameters revealing var-
ious physical properties. Plasma is considered to consist of nonrelativistic electrons
(density ne, mass me, temperature Te) and z−times charged ions (density ni, mass mi,
temperature Ti). Short range interactions effects as well as radiation effects are not
taken into account. Let the plasma be fully ionized, enclosed in a volume Ω and be in a
thermal equillibrium with temperature T . Let us define a Coulomb coupling constant or
nonideality parameter of a plasma as a ratio of an overage Coulomb- interaction energy
to an average kinetic energy, here the word “Coulomb” is usually skipped. There are
different types of the coupling parameters like electron-electron coupling representing the
ratio of average electron potential energy e2/(4πε0ree) to average kinetic energy kBT
for electrons separated by the mean electron-electron distance ree or the Wigner-Seitz
radius. The temperature is assumed to be the same for every species. Correspondingly,
the ion-ion and electron-ion coupling parameters represent the ratio of average poten-
tial energy z2e2/(4πε0rii), ze2/(4πε0rei) to average kinetic energy kBT for ions and
electron-ions separated by the mean ion-ion, electron-ion distances rii, rei. Concluding,
the generalized form of the Coulomb coupling parameter takes the form

Γab =
|zae · zbe|

4πε0rabkBT
, (1.1)

where the the Wigner-Seitz radius defined as

rab =

(4πna
3

)−1/3
, (1.2)

a, b = e, i, ze = −1, zi = z and for rei the total density n = ne+ ni is considered. Those
plasmas with values Γab << 1 may be called weakly coupled or ideal plasmas. Plasmas
in this regime have weak particle-particle correlations and are dominated by the thermal
properties. For example, the gaseous-discharge plasma, a controlled thermonuclear-fusion
experiment and the solar corona have Γii ≈ 10−3, 10−5. Moderately coupled plasmas
are characterized by Γab . 1, whereas the strongly coupled plasmas - by Γab > 1. In
this regime, the particle correlations play a crucial role. Strong ion-ion and electron-
ion correlations influence the dynamical properties that can affect important atomic,
radiative, and nuclear processes in the medium (Kraeft et al., 1986). Such plasmas can
be found in interiors of highly evolved stars like white dwarfs, neutron stars (Γii = 10 to
200 ).
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1.1 Some facts about plasma and its parameters

One of the common classical plasma length is the Landau length

l =
e2

4πε0kBT
. (1.3)

In plasma this length plays a role of the effective interaction radius, i.e. the distance at
which two electrons have a potential energy equal to a thermal one.

Another very useful parameter representing the ratio between the Wigner-Seitz radius
for electrons ree and Bohr radius rB = 4πε0 h̄

2/(mee
2) ≈ 0.53 10−10 m is a Brueckner

parameter: rs = ree/rB, h̄ = h/2π = 1.054571628(53) · 10−34 J·s is the Planck’s
constant.
We shall also consider parameters describing the extents to which the quantum-

mechanical effects are involved in a plasma. The lines

niΛi = 1 or neΛe = 1 (1.4)

with the thermal de Broglie wavelengths Λa

Λi =
h√

2πmikBT
and Λe =

h√
2πmekBT

(1.5)

divide the diagram Fig. 1.1 into degenerate (ne(i)Λe(i) >> 1), where the system must
be considered quantum-mechanically, and nondegenerate classical regions
(ne(i)Λe(i) << 1).

For high-density electron system such as conduction electrons in metal or matters
with the corresponding density, one uses the Fermi energy EF = h̄2(3π2ne)2/3/2me.
Since EF is an increasing function of ne, EF >> kBT can be realized in a high-density
electron system.

Consider now one of the most important plasma parameters - Debye screening length.
Debye screening illuminates the collective phenomena typical for a plasma. Consider a
point charge ze located at the origin (r = 0) : in vacuum it produces a potential field
ϕ = ze/(4πε0r). In the plasma such a potential field disturbs the spatial distribution
of charged particles. The field induced around the point charge in turn produces an
extra potential field, which should be added to the original potential ϕ; a new effective
potential Φ is thus obtained. A calculation along these lines was originally made by
Debye and Hückel (Debye and Hückel, 1923) in connection with the theory of strong
electrolytes.
The Poisson equation for the total field is thus the following

∇2Φ(~r) = −4π(zeδ(~r) + ze < δn(~r) >), (1.6)

where δ(~r) is the three-dimensional delta function. The average density variation
< δn(~r) > is calculated using the Boltzmann distribution:

< δn(~r) >= n exp
(−zeΦ(~r)

kBT

)
− n, (1.7)

where n refers to the uniform, average number density of the particles. The exponent
zeΦ(~r)/(kBT ) represents the ionic coupling parameter Γii presented above. When
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Γii << 1 then we can expand the Eq. (1.7) as < δn(~r) >= −zenΦ(~r)/(kBT ). Substitu-
tion of this into Eq. (1.6) yields a differential equation for determination of the effective
potential Φ(~r):

−∇2Φ(~r) +
4πnz2e2

kBT
Φ(~r) = 4πzeδ(~r), (1.8)

The solution to this equation with the boundary condition Φ(~r)→ 0, when r →∞ is

Φ(r) =
ze

r
exp

(
− r

rDi

)
(1.9)

The parameter

rDi =

√
4πε0kBT

4πniz2e2 . (1.10)

is called the ionic Debye length. The meaning of Eq. (1.9) is clear by comparison with
the bare Coulomb potential. For distance smaller than rDi, the effective potential is
virtually identical to the Coulomb potential, whereas for distances r >> rDi, Φ(r) ≈ 0.
In other words, the potential field around a point charge is effectively screened out by
the induced field for distances greater than the Debye length. If we consider only the
electrons on a uniform positive background then the Debye screening length will take
the following view

rDe =

√
4πε0kBT

4πnee2 . (1.11)

The calculation of the Debye screening can be extended to cases that involve a more
than one mobile charged component. Let us consider the electron-ion system. If we
use a subscript a to distinguish between the species of the plasma with charges zae and
density na, the total Debye length of such plasma is expressed as

rD =

√√√√ ε0kBT∑
a=e,i za

2e2na
. (1.12)

with ze = −1, zi = z.

1.2 Electric microfield distributions

The Electric Microfield Distribution (EMD) is determined by the sum of elementary
Coulomb fields ( ~E) created by a very large number of elementary charges at a fixed
charged or neutral point contained in a fixed volume.

The distribution of electric microfields influences many elementary processes in plasma
(ionization, recombination and dissociation) as well as governs a number of its optic
properties. In particular, EMD at the radiating atom or ion (radiator) determines the
Stark broadening of spectral lines, an effect widely applied in plasma diagnostics to
evaluate plasma densities in stellar atmosphere or in laboratory (Griem, 1974).
The problem of determining of the electric microfield distributions (EMD) is con-

ventionally divided into two parts due to the existence of two different time scales in
a plasma. On the time scales comparable to the electron relaxation time the plasma
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medium may be considered as a gas of electrons immersed in a positively charged neu-
tralizing background of ions and, thus, the Coulomb forces act at the observation point
to generate the microfield distribution. This distribution is called the high-frequency
component of the microfield since the electron relaxation time is dramatically less in
magnitude then that one of the ions. The low-frequency component, appearing on the
scale of the ion relaxation time, is then introduced by noting that it is governed by
the dynamics of ions, surrounded by electron clouds, and, consequently, the shielded
Coulomb forces at the observation point should thoroughly be considered. In recent
works it is argued that the low-frequency component of electric microfield also influences
the fusion rates (Romanovsky and Ebeling, 1998, 2004) and the rates for the three-body
electron-ion recombination in dense plasmas. For details of these applications concerning
the low frequency component we refer to the recent survey in this journal (Romanovsky
and Ebeling, 2006).
J. Holtsmark was the first who studied in 1919 the EMD in a plasma (Holtsmark,

1919). He considered a one-component model and completely neglected correlations
between particles. The Holtsmark distribution gives the probability to find a definite
value E of the electric microfield at a fixed given location in an ideal plasma. The
EMD is determined by the sum of elementary fields created by a very large number of
elementary point charges at a fixed neutral point. The main features of the Holtsmark
distribution are the long tail with the asymptotic drop proportional to E−5/2 and the
absence of the second EMD moment which stresses the role of extreme events.
Since the pioneering work of Holtsmark who studied one-component model and com-

pletely neglected correlations between particles much of the efforts has been concentrated
on a theory of the microfield distribution including the collective events in a plasma. In
1943 S. Chandrasekhar and von Neumann considered the probability of a stationary force
in an infinite homogeneous gravitational system which is also described by the Holtsmark
distribution (Chandrasekhar, 1943). S. Chandrasekhar also showed analytically that this
distribution has asymptotic behaviour for E similar to the one of the field of the nearest-
neighbor galaxy, which stresses that the possible non-random structure of the system
would influence EMD strongly. The first remarkable advance was made by M. Baranger
and B. Mozer (Baranger and Mozer, 1959; Mozer and Baranger, 1960) who wrote the
distributions of high- and low-frequency components of the microfield distribution as
expansions with respect to the correlation functions which then had been terminated
at the pair correlation. However, it was argued that such an approach is valid only
for low density, high-temperature plasmas where deviations from Holtsmark’s original
distribution, corresponding to the first term in the series, are not large. Afterwards,
Hooper and Tighe (Hooper, 1966; Tighe and Hooper, 1976, 1977) reformulated this
expansion in terms of other functions by introducing a free parameter. The disadvantage
of this method is the choice of a free parameter on the basis of the vague argument
arriving at a plateau where there is no dependence on the free parameter itself. To
improve these results Iglesias and Hooper (Iglesias and Hooper, 1982) included in the
analysis the Debye chain cluster expansion similar to that of Ursel and Mayer (Mayer
and Mayer, 1940). Quite an analogous approach, now known as adjustable-parameter
approximation model (APEX), was proposed by Iglesias, Lebowitz et. al. (Iglesias
et al., 1983; Iglesias and Lebowitz, 1984; Iglesias et al., 1985) but the free parameter,
called adjustable, had been chosen to satisfy the second moment rule for the electric
field strength. In the early 1980’s, following the idea of Morita on the similarity of the
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representation of the microfield distribution to that of the excess chemical potential,
Iglesias virtually reduced the problem to the determination of the radial distribution
function (RDF) for a fictious system with an imaginary part of the interaction potential
energy (Iglesias, 1983). This technique has the advantage that the knowledge of the
two-body function gives the Fourier transform of the microfield distribution exactly
without knowing many-body functions (Baranger and Mozer, 1959; Hooper, 1966; Tighe
and Hooper, 1977). This method was used for the calculation of the high-frequency
component for the so called semiclassical Deutsch model, where not only the quantum-
mechanical effects of diffraction but also screening field effects were taken into account
(Sadykova et al., 2004). Employing Iglesias’s idea, Lado developed an integral-equation
technique for calculation of the RDF and a good agreement with computer simulations
was obtained. Another point of interest is the inclusion of quantum-mechanical effects.
This was done by Held and co-workers at high temperatures when the Landau length
(l) is smaller than the thermal de Broglie wavelength of electrons (Held et al., 1982b,a,
1985). The pseudopotential and the corresponding correlation functions were then used
in the framework of the Baranger-Mozer expansion to find both a very rich picture
for the microfield distribution behaviour, depending on plasma parameters region, and
agreement with other approaches as well (Boercker and Dufty, 1983).

Within most of the previous calculations of electric microfield distribution, created by
only one of the components, the influence of the second component was totally neglected.
For the ion subsystem, in a first approximation, the electrons are assumed to move freely
through the plasma. Since the electrons are much faster than ions, they are treated as a
smeared negative charged background. For simplicity, this system is assumed to be in
thermal equilibrium, uniform in the density and macroscopically neutral. A more realistic
model should also take into account the variation of the background charge density. A
background charge distribution which differs from a uniform distribution results in a
screening of the ion charge, the screening strength is generally frequency dependent,
meaning that it depends on the ion velocity. In a first approximation one can neglect
the frequency dependence of the screening. Then one can talk of an one-component
plasma model (OCP) model on a polarization background POCP, which is used for the
description of the low frequency part (Baranger and Mozer, 1959; Mozer and Baranger,
1960; Ecker, 1957; Ecker and Müller, 1958; Gombert, 2002). However, both these models
fail to include correctly the correlations between the electron and the ion subsystem. To
include these correlations the two-component plasma model (TCP) will be used here.

We study here the two-component model where the correlations between the electron
and the ion subsystems is taken into account. TCP model was studied earlier in works
of J. Ortner et al. (Ortner et al., 2000) using the parameter integration technique in
the Debye approximation, X.-Z. Yan (Yan and Ichimaru, 1986) for partially degenerate
electrons, H. B. Nersisyan (Nersisyan et al., 2005, 2008) for strongly coupled plasmas. In
works (Yan and Ichimaru, 1986; Nersisyan et al., 2005, 2008) the EMD at a charged and
neutral particles were studied on a base of the potential-of-mean-force (PMF) approxima-
tion for electron-highly-charged-ion plasmas which exactly satisfies the second-moment
sum rule without use of adjustable parameters.
Beyond new possible applications we would like to point out the following important

principal statement: In any classical many-component plasma model with discrete pos-
itive and negative charged components the microfield distribution is divergent. This
is due to the divergence of the fields between positive and negative point charges at
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small distances. This problem can be resolved only by including quantum-mechanical
effects, this will be done here based on the ideas of Kelbg, Deutsch, Krasko, Gurskii
and coworkers. As a result it will be shown that the resulting distributions for the total
electric field are quite similar to the Holtsmark distribution. However, to conclude that
this demonstrates the irrelevance of the heavy components is completely unjustified.
On the contrary, one should accept, that the one-component model, so-called OCP,
is an unphysical model which describes at best limiting cases. Deviations from the
Holtsmark theory we observe mainly in the region of high fields. This is exactly the
region where the quantum effects incorporated into the potentials at small distances
lead to a modification of the fields. We consider these arguments as a justification to
concentrate on the investigation of the total field created by electrons and ions.

In this paper the free electrons and ions are also simulated numerically by a semiclassi-
cal Monte-Carlo (MC) and Molecular Dynamics methods with interactions described by
pseudopotentials. The semiclassical methods allow to include the quantum-mechanical
effects (the Heisenberg and the Pauli principle) by appropriate pseudopotentials which
resolve divergency problem of the electric fields at small distances. This method was
pioneered by Kelbg, Dunn, Broyles, Deutsch and others (Kelbg, 1964a; Dunn and Broyles,
1967; Deutsch, 1977; Minoo et al., 1981) and later significantly improved (Ebeling et al.,
1999; Filinov et al., 2003; Wagenknecht et al., 2001). A number of simulations of equillib-
rium two-component plasmas were made (Zamalin et al., 1977; Hansen and McDonald,
1981; Pierleoni et al., 1994; Klakow et al., 1994b,a; Penman et al., 1995). These models
are valid for highly temperature plasmas when the ions are bare or there is no significant
influence of the ion shell structure. In order to correctly describe alkali plasmas at
moderate temperatures one needs to take into account the ion shell structure. For
example, for the behaviour of alkali plasmas the short range forces between the charged
particles are of great importance. For alkali plasmas at small distances between the
particles deviations from Coulomb law are observed which are mainly due to the influence
of the core (shell) electrons. The method of model pseudopotentials describing the ion
structure was pioneered by Hellmann. Hellmann demonstrated, using the Thomas-Fermi
model, that the Pauli exclusion principle for the valence electrons can be replaced by a
nonclassical repulsive potential (Hellmann, 1935a,b, 1936; Hellmann and Kassatotschkin,
1936). This method was later rediscovered and further developed for metals by Heine,
Abarenkov and Animalu (Heine and Abarenkov, 1964; Harrison, 1966; Heine et al.,
1973). Heine, Abarenkov proposed a model, where one considers two types of interaction:
outside of the shell, where the interaction potential is Coulomb and inside, where it is the
constant. Parameters of this model potentials were determined using the spectroscopic
data. Later on the different pseudopotential models were proposed. For the more detailed
review we refer a reader to (Heine et al., 1973; Heine, 1970). All these models have
one disadvantage. Their Fourier transforms (formfactor) are not sufficiently convergent
when the Fourier space coordinate goes to infinity. Gurskii and Krasko (Krasko and
Gurskii, 1969) proposed a model potential which eliminates this problem and provides
smoothness of the pseuopotential inside the shell giving its finite value at small distances.
First attempt to construct the model for alkali plasmas taking into account ion structure
was made in works (Ebeling et al., 1976; Zimdahl and Ebeling, 1977; Ebeling et al.,
1977, 1979) where the Hellmann type pseudopotentials were used. In this work we use
Hellmann-Gurskii-Krasko pseudopotential (HGK) pseudopotential model for electron-ion
interactions and its modified version of ion-ion interactions. Notice also that there
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is a high interest in the construction of a pseudopotential model of particle interac-
tions in dense plasmas (high density); this model is to take into account not only the
quantum-mechanical effects including the ion shell structure at short distances, but also
the screening field effects. The screened Hellmann-Gurskii-Krasko pseudopotential was
derived in (Sadykova et al., 2009a) using Bogoljubov’s method (Bogoljubov-Born-Green-
Kirkwood-Yvon (BBGKY)) as described e.g. in (Bogoljubov, 1946, 1962), (Falkenhagen,
1971), (Baimbetov et al., 1995). This method is based on an expansion of the correlation
functions with respect to the Bogoljubov plasma parameter µ = e2/4πε0kBTrD where
rD is the Debye radius. Strictly speaking, the approach outlined here is based on the
Bogoljubov expansion which includes only linear in µ terms and is valid only for weakly
and moderately coupled plasmas with Γii . 1. Several calculations for Γii > 1 are also
presented but these results should be considered as mere extrapolations.
The thermodynamic properties and in particular the critical data of alkali plasmas

are of basic interest and of importance for high-temperature technical applications like
inertial confinement fusion. Over the past years a considerable amount of effort has been
concentrated on the experimental (Hensel, 1977; Hensel et al., 1985; Freyland, 1979),
(Juengst et al., 1985; Winter et al., 1988) and theoretical (Mott, 1974; Goldstein and
Ashcroft, 1985; Ebeling et al., 1988; Hess, 1992) investigation of the behavior of alkali
metals in the liquid and plasma state expanded by heating toward the liquid-vapor critical
point. Near the critical point the materials are in the thermodynamic state of a strongly
coupled plasma. The plasma phase transition (Mott transition) is a high-temperature
modification of the insulator-metal transition (Ebeling et al., 1976). Here we will go
far beyond the critical point to the region of nearly fully ionized plasmas where the
temperature T ≈ 30 000 K where most of valency electrons are ionized but the rest core
electrons are still tightly bound. In the table 1.1 the ionization energies of alkali atoms
are presented. The investigation of thermodynamic properties in alkali plasmas under
extreme conditions is not only important for basic research, but is also of high interest
and importance for high-temperature technical applications, e.g. in material sciences for
production of hydrocarbon superconductors with the help of alkali metals (Rosseinsky
and Prassides, 2010), for various industrial applications of alkali metal adsorption on
metals and semiconductors (Bonzel et al., 1989), geophysics and astrophysics for the
applications in geocosmical alkali plasma research (Klyucharev et al., 2007). There are
many applications, e.g. in material sciences, geophysics and astrophysics. Furthermore,
these studies throw light on the complex picture of phase transitions in metal vapors
which play an outstanding role in technology. Furthermore, these our studies throw
some light on the complex picture of phase transitions in metal vapors which play an
outstanding role in technological applications.
High-temperature alkali plasmas are widely applied in many technical projects. For

instance, Li is an alkali metal of considerable technological interest. Lithium is planned
to be used in inertial confinement fusion, solar power plants, electrochemical energy
storage, magnetohydrodynamic power generators and in a lot of further applications.
Recent advances in the field of extreme ultraviolet EUV lithography have revealed that
laser-produced Li plasmas are source candidates for next-generation microelectronics
(Sizyuk et al., 2006). For this reason we believe that the study of basic properties of
alkali plasmas, like the microfield distributions are of interest.
We consider electron-positron and alkali (Li+, Na+, K+, Rb+, Cs+), H+ TCP and

OCP cases. The electron-positron and alkali plasmas are anti-symmetric with respect
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Table 1.1: The ionisation energies (eV ) of alkali atoms (Ebeling et al., 1976)

H Li Na K Rb Cs Be

First electron 13.595 5.39 5.138 4.339 4.176 3.893 9.306

Second electron - 75.62 47.29 31.81 27.5 25.1 18.187

to the charges ze− = −e+ (z = 1) and symmetrical with respect to the densities
ni = ne while symmetric and anti-symmetric correspondingly with respect to the masses
mi >> me . We will calculate here the distributions of electric microfields acting on
ions and electrons in TCP, and on electrons in OCP, taking into account quantum
effects with the help of Kelbg, Deutsch potentials and the ion shell structure using
HGK pseudopotential and find the corresponding radial distribution functions. For
determination of the radial distribution functions we use the screened and screened
Deutsch (Arkhipov et al., 2000), Kelbg (Sadykova and Ebeling, 2007) potentials and
HGK pseudopotential in the Debye and moderately coupled plasma approximation (only
for TCP) (Sadykova et al., 2009a). The methods which are used for the calculation
are the coupling-parameter integration technique for OCP developed by C. A. Iglesias
(Iglesias, 1983) and quantum TCP generalized by Ortner et al. (Ortner et al., 2000). We
would like to underline again that the inclusion of both components into the theory and
a correct account of the short-range electron-ion interactions, is very essential for an
understanding of the high field wing of the electric microfields in the plasma. Therefore
we will pay special attention to this point.

1.3 The static and dynamic structure factors

As one of possible applications of our new screened HGK pseudopotentials we see the
structure factors because for determination of the static and dynamic structure factors
one needs to have a screened pseudopotential as an essential input value. The structure
and thermodynamic properties of Alkali and earth-alkali plasmas are of basic interest
and of importance for high-temperature technical applications.

On the other hand, recently, X-ray scattering has proven to be a powerful tool which
permits to measure density, temperature, charge states and simultaneously resolve the
non-collective (particle) spectral characteristics of beryllium (Glenzer et al., 2003), carbon
(Gregori et al., 2006a) and shock-compressed aluminium (Riley et al., 2000), in the warm
dense matter regime.
In inertial confinement fusion and laboratory experiments related to astrophysics,

Coulomb systems demonstrate a variety of plasma regimes and we are interested here
in moderately and strongly coupled plasmas with Γii ≥ 1. Such regimes often manifest
themselves during plasma-to-solid phase transitions. Recent experiments with solid
density Be plasmas presumably showed a significant level of ion-ion coupling effects
(Glenzer, 2007). In the present study of the two-component plasma static (SSF) and
dynamic (DSF) structure factors we go beyond the random-phase approximation (RPA)
and do not use the Mermin model also based on the RPA. The method of moments
we apply accounts for the the ion-ion and ion-electron correlations through the fourth
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power frequency moment of the loss function (the module of the imaginary part of
the inverse dielectric function divided by frequency), the f -sum rule and other exact
relations automatically, by construction, and the correlations are taken into account by
the static characteristics we estimate. Notice also that the moments (sum-rules) are
calculated specifically for the pseudopotential we employ and, that since the electrons
are main contributors to the scattering process, the charge-charge dynamic structure
factor, Szz(k,ω), we calculate is directly related to the electron DSF and the differential
scattering cross section,

d2σ

dΩdω
= σT

k1
k0
See(k,ω), (1.13)

where σT = 8πr2
e/3 is the total Thomson cross section with the classical electron ra-

dius re. The difference between the energy of the in- and outcoming photons which
contribute to this intensity, is the energy of the collective mode generated in the
plasma, i.e., effectively, the frequency ω the scattering intensity (1.13) depends on,
while the corresponding wavenumber k is the module of the transfered momentum,
k = | ~k1 − ~k0| = 4π sin(θ/2)/λ0, where θ is the scattering angle and λ0 photon wave-
length, presumed to be invariable in the scattering process (Sheffield, 1975).
For example, under the characteristic experimental conditions of the free electron

laser facility at DESY (FLASH) (Höll et al., 2007), for θ = π/2, λ0 = 15 nm (≈ 50
eV ) ne = 1021 − 1022 cm−3, T ∼ 10eV , k = 3.6 · 106 cm−1 and the scattering parameter
(Sheffield, 1975) α = kDe/k & 3.8 correspond to the“collective” scattering. On the other
hand, the electronic Debye radius k−1

De is of the order of the interparticle distance so that
the Debye approximation is hardly applicable.

It is clear that the method of moments reduces the knowledge of the DSF to that of the
static characteristics, precisely, the SSF, see, e.g., (Arkhipov et al., 2007) and (Arkhipov
et al., 2010). In the case of weakly coupled plasmas the latter can be obtained within the
Debye-Hückel theory or the RPA, while at moderate coupling the RPA fails to describe
the spatial correlations correctly. However, in recent works by Gregori et al. (Gregori
et al., 2006b), (Gregori et al., 2007) it was shown that in moderately coupled plasmas
the BBGKY technique of expansion with respect to the plasma coupling parameter
developed in the classical work of Bogoljubov provides sufficiently reliable expressions for
the SSFs. In (Arkhipov et al., 2007) this was shown for hydrogen plasmas, representing
the singly charged point charges, by comparison with MD-based results of Hansen and
McDonald (Hansen et al., 1974). We consider here mainly moderately coupled plasmas
and in our study of the SSFs we follow here this relatively simple and analytical route
based on Bogoljubov expansions and consider it as an alternative to methods based on
ab initio molecular dynamic simulations applying quantum density functional theory
(DFT), hypernetted-chain (HNC) methods, quantum Monte-Carlo etc. which need in
part high numerical efforts and are computer time consuming (Schwarz et al., 2009),
(Gericke et al., 2009), (Bernu and Ceperley, 1999).

We consider Li+, Na+, K+, Rb+, Cs+ and Be2+ plasmas of a TCP with the charges
ze− = −e+ and masses mi >> me and the densities ne = zni (z = 1, 2). For simplicity,
we neglect other ionization states for these plasmas and consider the temperatures
T ≈ 30 000 K for alkali plasmas and T ≈ 100 000 K for Be+ plasmas where most of
valency electrons except the core electrons are ionized. We calculate the TCP correla-
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tion functions, static and dynamic structure factors; we include into our consideration
quantum effects and the ion shell structure using the screened Hellmann-Gurskii-Krasko
pseudopotential obtained in (Sadykova et al., 2009a). The method which is used for the
calculation of the SSFs of alkali and alkaline earth plasmas is essentially the TCP HNC
approximation developed for the case of absence of the local thermodynamic equilibrium
(LTE) by Seuferling et al. (Seuferling et al., 1989) and further discussed and extended
for the SSFs by Gregori et al. (Gregori et al., 2006b), (Gregori et al., 2007); while to
determine the DSFs we employ the method of moments developed by the V.M. Adamyan
et al. as applied to two-component Hydrogen-like point charges (HLPC) plasmas where
the charged particles were considered without an account of the ion shell structure
as point-like electron and singly ionized ion system (Adamyan and Tkachenko, 1983;
Adamyan et al., 1985; Adamjan et al., 1993). We would like to underline again that
the inclusion of both components into the theory and a correct account of short-range
electron-ion interactions, is essential for the understanding of the structure factors in
plasmas.
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2 Electric microfield distributions

2.1 Holtsmark distribution

2.1.1 One-component plasma

J. Holtsmark was the first who studied the Electric Microfield Distribution in a plasma
in 1919 (Holtsmark, 1919). He considered one-component model consisting of Ni ions
and completely neglected correlations between particles. Define Q(~ε) as the probability
density of finding an electric field ~ε at a neutral point, located at ~r0, at the origin.
This system is described by classical statistical mechanics in a canonical ensemble of
Ni particles and temperature T . Note, that if the charge of the radiator is not equal
to 0, then it should be taken into account and since we put the radiator at the origin,
then there will be no dependence on the ~r0. The normalized probability density of the
microfield ~ε is in the thermodynamic limit is then given by

Q(~ε) =
〈
δ(~ε− ~E)

〉
≡ 1
Z

∫
Ω

exp(−βU(R̃(i),~r0))δ(~ε− ~E(R̃(i)),~r0)d~r0dR̃
(i) (2.1)

where the angular brackets symbolize averaging over the distribution function of the
positions of all ions and β = 1/kBT , R̃(i) = {~r(i)1 ,~r(i)2 , ...,~r(i)Ni} are the coordinates of
ions. Here

Z =
∫

Ω
exp(−βU(R̃(i),~r0)d~r0dR̃

(i) (2.2)

is the canonical partition function and U(R̃(i),~r0) is the potential energy of the ionic
interactions:

U(R̃(i),~r0) = Uii(R̃
(i)) + UiR(R̃

(i),~r0) (2.3)

As it was mentioned above, Holtsmark considered no interactions among the particles and
since the radiator is a neutral point then the interaction term in (2.3) can be represented
as

Uii(R̃
(i)) =

1
2

Ni∑
j 6=k=1

uii(|~r
(i)
j − ~r

(i)
k |) = 0 (2.4)

UiR(R̃
(i),~r0) =

Ni∑
j=1

uiR(|~r0 − ~r
(i)
j |) = 0 (2.5)

The total electric field ~E(R̃(i),~r0) acting on the radiator is given by the superposition of
ionic single-particle Coulomb fields

~E(R̃(i),~r0) = ~E(i)(R̃(i),~r0) (2.6)
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with
~E(i)(R̃(i),~r0) =

Ni∑
j=1

~Ei(~r0 − ~r
(i)
j ) =

Ni∑
j=1

ze

4πε0|~r0 − ~r
(i)
j |

2 r̂0j , (2.7)

where r̂0j is a unit vector in the direction of ~r0 − ~r
(i)
j .

The spherical symmetric interaction between plasma particles and the isotropy of
the system allows to introduce the normalized microfield distribution P (ε) = 4πQ(~ε)ε2.
P (ε) can be expressed in terms of the Fourier transform of Q(ε), which T (k), is through

P (ε) =
2ε
π

∞∫
0

kT (k) sin(εk)dk, (2.8)

where
T (~k) =

∫
Q(~ε) exp(ı~k~ε)d~ε =< exp(ı~k · ~E) >, (2.9)

where ı denotes an imaginary unit with ı2 = −1 and < · · · > is a statistical average,
or

T (~k) =
1
Z

∫
Ω

exp[ı~k · ~E(R̃(i),~r0)]e
−βU(R̃(i),~r0)d~r0dR̃

(i), (2.10)

The coefficients of the expansion of the function T (k) at k → 0 yield the even moments
of the microfield distribution,

T (k) = 1− k2

6 < E2 > +
k4

120 < E4 > − · · · . (2.11)

A similar expansion for the function L(k) defined by T (k) = exp(−L(k)) yields

L(k) =
k2

6 < E2 > +
k4

72 [< E2 >2 −3
5 < E4 >] + · · ·. (2.12)

As one can see, the Fourier transform of the EMD can be interpreted as a generating
function of microfield even moments. Equations (2.1)-(2.12) describe the EMD at the
position ~r0 of the radiator generated by the statistically distributed ions of the OCP.
Since we are interested in calculating the EMD, (2.8), in a infinite system, the statistical
average of any quantity becomes translationally invariant with respect to ~r0 and the
location of the test charge can be chosen as the origin ~r0 = 0 without loss of generality.
For determination of the Fourier transform of EMD for OCP (2.10) Baranger and

Mozer developed the cluster expansion technique (Baranger and Mozer, 1959; Mozer and
Baranger, 1960) using the following transformation:

χj
(i)(~k) = eı

~k· ~Ei(~rj) − 1, (2.13)

Using this transformation the exponential factor in Eq. (2.10) becomes

exp[ı~k · ~E(R̃(i))] = ΠNi
j=1[1 + χj

(i)(~k)]

= 1 +
∑

1
χn

(i)(~k) +
∑

2
χm

(i)(~k)χn
(i)(~k) + · · ·, (2.14)
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2.1 Holtsmark distribution

where
∑

1 means the sum over all particles,
∑

2 the sum over all pairs, etc. This
transformation is similar to the use of Mayer’s functions for thermodynamic properties
of gases (Mayer and Mayer, 1940). Substituting Eq. (2.14) into (2.10) leads in the
thermodynamic limit N , Ω→∞ when n = N/Ω remains constant directly to the series

T (~k) = exp{
∞∑
j=1

nj

j!
hj

(i)(~k)}. (2.15)

Here hj (i)(~k) is given by

hj
(i)(~k) =

∫
χ1

(i)(~k)χ2
(i)(~k) · · · χj (i)(~k)ḡj (i)(R̃j

(i)
)dR̃j

(i), (2.16)

and ḡj (i)(R̃j
(i)
) is the single-particle Ursell cluster function (Mayer and Mayer, 1940)

for OCP expressed by the ordinary pair correlation function between radiator R and
“j” plasma particles (ions) at ~r(i)1 ,~r(i)2 , ...,~r(i)j , ḡj (i)(~r) = giR(r) ' exp(−U∗iR(r)/kBT ) in
a weakly coupled limit with U∗iR(r) being the screened interaction potential. Since we
do not consider any correlations among the particles as well as with the radiator then
ḡj

(i) = giR(r) = 1. The integration range in (2.16) is controlled by both the χj (i)(~k)
and the Ursell functions because for completely uncorrelated systems of particles the
many-body functions giR(r) tend to unity while ḡj (i) → 0 beginning with ḡ2

(i). One
should notice that j determines the order of the correlation function. For more detailed
review we refer a reader to (Ecker, 1972).
Equations (2.15), (2.16) together with the relation T (~k) = e−L(

~k) constitutes the
generalization of the Baranger-Mozer cluster expansion technique to the OCPs.
For ideal OCPs, the Holtsmark limit, all terms at j ≥ 2 in (2.15) in the sum vanish,

and only the term with j = 1 contributes to the EMD. Having taken into account all
the described above, the expression (2.15) will turn into the following

T (k) = exp{n
∫
χ1(~k)d~r1}, (2.17)

where χ1(~k) = eı
~k· ~Ei( ~r1) − 1, here “i” is skipped. If we skip the index and insert the

definition for χ1 we get:

T (k) = exp{n
∫
(eı

~k· ~Ei(~r) − 1)d~r}, (2.18)

Introducing the polar coordinates we can easily estimate the integral entering the equation
2.18:

T (k) = exp{n
∞∫

0

π∫
0

2π∫
0

[
e
ık ze

4πε0r2 cos θ − 1
]

sin θdϕdθr2dr} =

4πn
∞∫

0

[
j0

(
k

ze

4πε0r2

)
− 1

]
r2dr = exp(−k∗3/2 2

5
√

2π), (2.19)
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2 Electric microfield distributions

where j0 = sin(x)/x is the spherical Bessel function of order zero and k∗ = kE0,
E0 = ze

4πε0rii2
with rii being the ion-ion spacing. For the detailed derivation see in the

Appendix 7. The final formula for the Holtsmark distribution is the following:

P (β)H =
2β
π

∞∫
0

k∗ exp(−k∗3/2 2
5
√

2π) sin(βk∗)dk∗. (2.20)

One should note that if one measures the field in electron OCP in E0 = e
4πε0ree2

with ree being the electron-electron spacing and in ion OCP in E0 = ze
4πε0rii2

then the
Holtsmark distribution remains invariant, its form does not change. In the Figure 2.1
the Holtsmark distribution is shown.

0 2 4 6 8 10
0,0

0,1

0,2

0,3

0,4

P
(
)

Holtsmark

Figure 2.1: The Holtsmark electric microfield distribution for hydrogen-like plasma z = 1

2.1.2 Two-component plasma
In Two-component electron-ion plasma the Fourier transform will turn into:

T (k) = exp{
∑
α=i,e

na

∞∫
0

π∫
0

2π∫
0

[
e
ık zαe

4πε0r2 cos θ − 1
]

sin θdϕdθr2dr} = exp(−k∗3/2 2
5
√

2π),

(2.21)
where k∗ = kE0, E0 =

zeff e
4πε0rei2

with zeff =
(
z(1+

√
z)

(1+z)

)2/3
. In this case the Holtsmark

distribution will have the same functional form (2.20) as either ionic or the electronic
OCP. However, when one measures the field in other units different from mentioned
above then the OCP and TCP Holtsmark distributions may strongly differ from each
other.
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2.1 Holtsmark distribution

It is important to stress that the Holtsmark distribution is a good approximation for
high-temperature and low density plasma. That is why at such conditions any theory
considering the pair correlations should lead to the Holtsmark distribution.

2.1.3 The second moment

It is very useful to have a knowledge of moment sum rules for developing approximation
schemes for fluids and plasmas. The EMD moments fix the shape of the distribution
and contains useful information about the system. Here, we derive exact expressions for
the second moment of the EMD at a neutral point.
Let us write the exact expressions for the second moment of the EMD at a neutral

point in the one-component plasma. The second moment can be found from (2.19)in the
limit k → 0.

lim
k→0

T (k) = 1− k2

6 4πn
∞∫

0

z2e2

(4πε0)2r2dr (2.22)

Taking into account that T (k) at k → 0 yields the even moments (2.11) we get

< E2 > = 4πn
∞∫

0

z2e2

(4πε0)2r2dr =

− 4πn z2e2

(4πε0)2r
|∞0 →∞ (2.23)

As we can see the second moment of the Holtsmark microfield distribution in OCP does
not exist.
Let us now consider the second moment for the TCP. From (2.21) follows

< E2 > = 4πne
∞∫

0

e2

(4πε0)2r2 + 4πni
∞∫

0

z2e2

(4πε0)2r2dr =

− 4πne(1 + z)
e2

(4πε0)2r
|∞0 →∞ (2.24)

The second moment of the Holtsmark distribution in the TCP also does not exist.

2.1.4 The asymptotics of the Holtsmark distribution. The Holtsmark tail

Let’s now derive the asymptotics of the Holtsmark distribution at β → ∞ conventionally
defined as a tail of the distribution. Returning to the introduced Holtsmark integral

17



2 Electric microfield distributions

(2.20):

lim
β→∞

P (β) = lim
β→∞

2β
π

∞∫
0

k∗ exp(−k∗3/2 2
5
√

2π) sin(βk∗)dk∗ =

lim
β→∞

−2β
π

∞∫
0

∂

∂β
exp(−k∗3/2 2

5
√

2π) cos(βk∗)dk∗ =

Taking into an account that at β →∞ the stationary phase limit can be
applied, meaning negligibly small l∗ =⇒ k∗ → 0, we get:

lim
β→∞

−2β
π

∂

∂β

∞∫
0

(1− k∗3/2 2
5
√

2π) cos(βk∗)dk∗ ≈ 3
2β
−5/2 (2.25)

For the detailed derivation see in the Appendix 7.
In the Figure 2.2 the Holtsmark distribution (2.20) compared to its asymptote (2.25)

at 1 < β < 161 is shown. As one can see, the Holtsmark tail starts to converge to its
asymptote at β ' 16.
At β → 0, we get:

lim
β→0

P (β) = lim
β→∞

2β
π

∞∫
0

k∗ exp(−k∗3/2 2
5
√

2π) sin(βk∗)dk∗ =

lim
β→0
−2β2

π

∞∫
0

k∗2exp(−k∗3/2 2
5
√

2π)dk∗ ≈ 25
6π2β

2 (2.26)

2.2 One-component plasma model

Define Q(~ε) as the probability density of finding an electric field ~E = ~ε produced by Nα

(α = e or i) particles moving in a neutralizing background at a charged point zRe (zR > 0)
located at ~r0, at the origin. This system is described by classical statistical mechanics in
a canonical ensemble of Nα + 1 particles contained in a volume Ω and temperature T .
Note, that if the charge of the radiator is not equal to 0, then it should be taken into
account. The total system is assumed to be in thermal equilibrium and macroscopically
neutral. The definition of the normalized probability density (2.1) of the microfield ~E
together with the normalized microfield distribution P (ε) (2.8) was introduced above
in the Sec. 2.1 for the Holtsmark distribution with the following changes. Here, we do
consider the particle correlations including correlations between the plasma particle and
the radiator:

U(R̃(α),~r0) = Uαα(R̃
(α)) + UαR(R̃

(α),~r0) + VB (2.27)

with either electron-electron, electron-radiator or ion-ion, ion-radiator terms respectively,
α = e or i. VB is the contribution to the potential energy due to the background.
Assuming spherical symmetric interactions between the particles the interaction terms

18



2.2 One-component plasma model
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Figure 2.2: The Holtsmark electric microfield distribution and its asymptote at β → ∞ for
hydrogen-like plasma z = 1 in a double decadic logarithmic scale

in (2.27) can be represented as

Uαα(R̃
(α)) =

1
2

Nα∑
(j 6=k=1)

uαα(|~r
(α)
j − ~r(α)k |), (2.28)

UαR(R̃
(α),~r0) =

Nα∑
j=1

uαR(|~r0 − ~rαj |) (2.29)

in terms of the pair interaction potentials uαα(r) and uαR(r). The total electric field
~E(R̃(α),~r0) acting on the radiator is given by the superposition of all the ionic or electron
single-particle microfields

~E(R̃(α),~r0) = −
~∇0U

zRe
=

Nα∑
j=1

~Eα(~r0 − ~rj
(α)) + ~EB

=
Nα∑
j=1

zαe

4πε0|~r0 − rj (α)|
2 r̂

(α)
0j + ~EB, (2.30)

where r̂(α)0j is a unit vector in the direction of ~r0 − ~r
(α)
j . ~∇0 is the gradient with respect

to ~r0.
This system models what is usually referred to as the high-frequency component of the
field when α = e or low-frequency component when α = i in a real plasma. As it was
mentioned above, since we are interested in calculating the EMD, (2.8), in a infinite
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2 Electric microfield distributions

system, the statistical average of any quantity becomes translationally invariant with
respect to ~r0 and the location of the test charge can be chosen as the origin ~r0 = 0
without loss of generality.

In this work we apply the coupling parameter integration method proposed by C. A.
Iglesias in (Iglesias, 1983). This approach is based on recognizing the similarity between
the formal expressions for the excess chemical potential1 and the Fourier transform of
Q(~ε).

The Fourier transform of Q(~ε) is then expressed, without any approximation, in terms
of a two-body function which could be interpreted as a “generalized” radial distribution
function (RDF) G(~r,~k) involving the radiator and one of the plasma particles. This is
in a contrast to previous developments which require knowledge of many-body functions
(Baranger and Mozer, 1959; Mozer and Baranger, 1960), (Hooper, 1966), (Iglesias and
Hooper, 1982; Hooper, 1966).
Following the (2.10) the Fourier transform of the EMD probability density can be

alternatively represented as:

TαR(~k) =
ZαR(~k)

ZαR
, (2.31)

where
ZαR(~k) =

∫
Ω
e−βU(R̃(α),~k)dR̃(α), (2.32)

and ZαR is introduced as Z above in Eq. (2.2). The subscripts sαR denote the α
species producing the electric field at a radiator R. The function can be interpreted as
the generalized configurational partition function for a system with “potential energy”
U(R̃(α),~k) = U(R̃(α))− ıkBT (~k · ~E). To accomplish this we introduce the parameter λ
which is defined as the magnitude of the vector ~k = λk̂, where k̂ is a unit vector in the
direction of ~k.
From the definition of Tα(~k) in Eq. (2.31) we may write

lnTαR(~k) = ln[ZαR(λ = ~k)/ZαR(λ = 0)]

=
∫ k

0
dλ
∂ lnZαR(~k)

∂λ
=
∫ k

0
dλ
< (ık̂ · ~E) exp(ı~k · ~E) >

< exp(ı~k · ~E) >

= ık̂nα

∫ k

0
dλ

∫
d~rEα(~r)[GαR(~r,λk̂)− 1]. (2.33)

Here ~k = k̂λ, ~Eα(~r) = zαer̂/4πε0(r(α))2 with ze = −1, zi = z is the single particle either
ionic or electrical fields. GαR(~r,~k) represents the pair correlation functions between the
radiator and the plasma particles in a fictitious system whose interaction potential is
given by the complex quantity U(R̃(α),~k), i.e.,

GαR(~r1,~k) = Ω2

Z(~k)

∫
Ω
e−βU(R̃(α),~k)dR̃

(α)
1 . (2.34)

1The excess (ex.) chemical potential (CP) is defined as the difference b/w the CP of a given
species and that of an ideal (id.) gas under the same condition (pressure, temperature, etc.).
µ = −kBT lnZN+1/ZN = µid + µex. Here ZN , ZN+1 are the partition functions of N and N + 1
particles respectively.
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2.2 One-component plasma model

Here R̃(α)
s = ΠNα

a=s+1d~r
(α)
a is the reduced volume element in a phase space which does

not involve the particles 1, 2, · · ·, s of plasma species α. At ~k → 0 they coincide with the
actual RDF gαR :

gαR(~r
(α)
1 ) =

Ω2

Z

∫
Ω
e−βU(R̃(α))dR̃

(α)
1 . (2.35)

Here, U (R̃(α)) does not depend on ~r0. The pair correlation functions given by Eq. (2.35)
describe coupling between the radiator (ion) and plasma particles. When the coupling
between the radiator and particles vanishes, e.g. radiator is a neutral point, the pair
correlation function behaves like gαR → 1. If the radiator is a particle of plasma species
β these correlation function coincide with the RDF of bulk plasma, gαR ≡ gαβ.
The central problem is now the evaluation of GαR(~r,~k). This complex correlation

function must be known in the interval from 0 to k. Usually approximation schemes of
the type commonly employed in the liquid theory are applied.

Many of these schemes are based on “thermodynamic perturbation theory” (Zwanzig,
1954). Here we apply the exponential approximation (Iglesias et al., 1985; Iglesias and
Lebowitz, 1984; Iglesias et al., 1983; Iglesias, 1983), (Andersen and Chandler, 1972). The
system with potential U (k = 0) = U is chosen as a reference system and its structure is
assumed to be known to a good approximation. The perturbation potential is then given
by U1 = −ı(kBT )(~k · ~E) and we expand the correlation functions (2.34) with respect
to U1. Within first order we obtain GαR(~r, k) ≈ gαR(r)[1 + ı~k · ~Eα]. Here gαR(r) are
the actual RDF in the real system (2.35), and ~Eα = ~Eα

0
(~r, 0). The electric fields ~Eα(~r)

may be interpreted as effective electric fields in the fictitious system which have no
dependence on ~k. Taking into account that < ~E >= 0 we obtain

~Eα = ~Eα + nβ

∫
d~r1 ~Eβ(~r1)[gαβ(|~r− ~r1|)− 1]. (2.36)

Since gαR(r) depends only on |~r − ~r1| the effective electric fields in (2.36) can be
represented as ~Eα(~r) = r̂Eα. The single particle electric fields can be written as ~Eα = r̂Eα.
In the weak coupling regime (Γii → 0) the pair correlation function (RDF) in the ionic
OCP is given by the linear Debye-Hückel approximation

giR(r) ≈ 1− zzRe
2

kBTr
exp(−r/rD). (2.37)

Inserting Eq. (2.37) into (2.36) we get the following effective Debye screened field

Ei(r) =
ze

r2 (1 + χr) exp(−χr). (2.38)

with

χ =
1
rD

=

∑
a=e,i

4πnaea2

4πε0kBT

1/2

, (2.39)

rD being the total Debye radius.
We would like to point out that the use of Debye-Hückel form (2.38) for gαR(r) and
effective electronic fields should be questioned when the quantum-mechanical diffraction
effects play a significant role in their correlations. That is why in our works for particle
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2 Electric microfield distributions

interactions we used the quantum-mechanical Deutsch and Kelbg pseudopotentials which
allow to avoid such difficulties. Whereas for the screened interactions we have used
the screened Deutsch (Sadykova et al., 2004), Kelbg (Sadykova and Ebeling, 2007),
(Sadykova et al., 2005) pseudopotentials and derived the screened Hellmann-Gurskii-
Krasko pseudopotentials, described later in Subsec. 4.1.2 and in Sec. 3.1 on the
p. 42, which in addition to the quantum diffraction effects and symmetry take into
account the ion shell structure (Sadykova et al., 2009a,b). In the work (Sadykova et al.,
2009a,b) we applied the classical approach based on the BBGKY chain of Bogoljubov
equations (Bogoljubov, 1946, 1962) to get these effective fields directly from the screened
pseudopotentials.

~Eα = − 1
zRe

~∇rΦαR(r), (2.40)

here for ΦαR(r) (α = e or i) the equations (4.24) in the Sec. 4.1.2 are used. Alternatively
this can be done on the basis of the potential of mean force approximation (PMF)
with the help of logarithmic derivative of the actual RDF (Yan and Ichimaru, 1986),
(Nersisyan et al., 2005).

We now use the exponential approximation (Iglesias et al., 1983) and make the ansatz

GαR(~r,~k) = gαR(r) exp[ı~k · ~Eα(r)] (2.41)

and integrate (2.33) with respect to λ and the angles to find

lnTαR(k) = 4πnα
∞∫

0

Eα(r)

[
j0 (kEα(r))− 1

Eα(r)

]
gαR(r)r

2dr, (2.42)

j0 is the spherical Bessel function of order zero. Equation (2.42) is the main results of
C.A. Iglesias (Iglesias, 1983). gαR(r) represents the radial distribution function for a
screened either ion or electron subsystems in OCP case. In this work, the actual radial
distribution function is estimated as following (Kraeft et al., 1986)

gαR(r) = exp
(
−ΦαR(r)

kBT

)
(2.43)

If the radiator represents one of the ions zR > 0 then ΦαR corresponds to Φαi.
It is now possible to evaluate TαR(k) from Eqs. (2.42) in terms of the radial distribution
function (2.43), screened Deutsch pseudopotentials (3.18-3.20) in the Sec. 3.1 (Sadykova
et al., 2004), screened Kelbg pseudopotential (3.45), (3.46) in the Sec. 3.1 and the
effective fields (2.40).

2.2.1 The second moment

As it has been mentioned above a knowledge of moment sum rule is often useful in
developing approximation schemes for fluids and liquids. For example, in the APEX
method the exact second moment was incorporated into the EMD calculations.
The second moment within the exponential approximation (2.41) can be found from
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2.2 One-component plasma model

(2.42) in the limit k → 0. It yields

< E2 >= 4πnα
∞∫

0

Eα(r)Eα(r)gαR(r)r2dr, (2.44)

Let us consider now the exact expression for the second moment of the microfield
distribution in OCP and for a charged radiator. The second moment can be written as
following

< E2 >=
1

(zRe)2 <
~∇0U · ~∇0U >, (2.45)

where ~∇0 is the gradient with respect to ~r0 and the average is taken over the canonical
ensemble defined in (2.1). Noting that e−U/kBT (~∇0U ) = −kBT (~∇0e

−U/kBT ), substitut-
ing this into (2.45), integrating by parts, and setting the surface terms equal to zero
yields

< E2 >=
kBT

(zRe)2 < ∇0
2U >= −kBT

zRe
< ~∇0 · ~E > (2.46)

Inserting (2.30) and ~∇ · ~Eα(~r) = −(1/r2)[r2u
′
αR(r)/zRe]

′ into (2.46), taking advantage
of Poisson’s equation and using the translational symmetry, we have

< E2 >=
kBTnB
ε0zR

− kBT4πnα
z2
Re

2

∫ ∞
0

[r2u
′
αR]

′
gαR(r)dr, (2.47)

where nB represents the background charge density. The functions gαR(r) have been
described above, see Eq. (2.35), where nαgαR(r) is the density of plasma particles α at
a distance r from the radiator. The interaction potential U(R̃(α)) does not depend on
~r0. The exact second moment of the EMD (2.47) must be fulfilled by (2.44).

To get the effective fields we apply the classical approach based on the BBGKY
chain (Bogoljubov, 1946, 1962) for the Hellmann-Gurskii-Krasko pseudopotential model
(Krasko and Gurskii, 1969) in TCP. The screened HGK pseudopotential model takes
into account not only the quantum-mechanical, screening effects but also the ion shell
structure. We also used the screened Deutsch pseudopotentials for OCP obtained with
the help of the same Bogoljubov approach in (Arkhipov et al., 2000) and the screened
Kelbg pseudopotential model derived in (Sadykova and Ebeling, 2007) on a base of the
method described by Falkenhagen in (Falkenhagen, 1971), which is primarily based on
Bogoljubov’s works (Bogoljubov, 1962). The method applied provides with the quite
good results at Γii . 1. Using Eq. (2.43) we can represent this field as

Eα =
kBT

zRe

∂

∂r
[ln gαR(r)]. (2.48)

Inserting Eq. (2.48) into (2.44) automatically satisfies the sum rule (2.47) without any
adjustable parameter. Summarizing all the said above, we can calculate the EMDs with
the exact second moment using Eq. (2.8) or the following equation

P (β) =
2β
π

∞∫
0

k∗TR(k
∗) sin(βk∗)dk∗ (2.49)
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2 Electric microfield distributions

represented in dimensionless electric field form, where β = E/E0 and k∗ = kE0,
E0 = ze

4πε0rαα2 with rαα being the electron-electron spacing and using Eqs. (2.42),
(2.43) and (2.40). This approach is based on integral-equation method, exponential
approximation (2.41) and classical Bogoljubov approach (BBGKY) for the screened
pseudopotentials.

The ionic Coulomb system

Let us consider now the ionic OCP model. If the interaction between ions is described
by the classical bare Coulomb potential, then taking advantage of Poisson’s equation we
can write

∇0
2U =

zzRe
2

ε0
(ni −

Ni∑
j=1

δ(~rj)), (2.50)

where zni = ne and −ene = ~∇0 · ~EB/4π is the background charge density, which remains
unchanged in the thermodynamic limit. Inserting this equation into (2.46) and taking
into account Eq. (2.47) we get

< E2 >OCP =
kBTne
ε0zR

− kBTzni
ε0zR

∫ ∞
0

δ(r)giR(r)dr

=
kBTne
zRε0

− kBTzni
ε0zR

giR(0) =
kBTne
zRε0

, (2.51)

Here is assumed that for zR > 0, ne = zni and giR(0) = 0, Eq. (2.35), if quantum-
diffraction effects are negligible for the ions.

2.3 Two-component plasma model

Define Q(~ε) as the probability density of finding an electric field ~E = ~ε produced at a
charged point zRe by Ni ions and Ne electrons moving in a neutralizing background
(zR > 0) located at ~r0, at the origin. This system is described by classical statistical
mechanics in a canonical ensemble of Ni+Ne+ 1 particles contained in a volume Ω and
temperature T . Note, that if the charge of the radiator is not equal to 0, then it should
be taken into account. The total system is assumed to be in thermal equilibrium and
macroscopically neutral. The definition of the normalized probability density (2.1) of
the microfield ~E is then given by (Yan and Ichimaru, 1986; Ortner et al., 2000)

Q(~ε)TCP =
〈
δ(~ε− ~E)

〉
≡ 1
Z

∫
Ω

exp(−βU(R̃(i), R̃(e),~r0))δ(~ε− ~E(R̃(i), R̃(e),~r0))d~r0dR̃
(i)dR̃(e) (2.52)

where the angular brackets symbolize statistical averaging over the distribution function
of the positions of all ions and electrons, β = 1/kBT , R̃(i) = {~r(i)1 ,~r(i)2 , ...,~r(i)Ni} are the
coordinates of ions, R̃(e) = {~r(e)1 ,~r(e)2 , ...,~r(e)Ne} - the coordinates of electrons. Here

Z =
∫

Ω
exp(−βU(R̃(i), R̃(e),~r0)d~r0dR̃

(i)dR̃(e) (2.53)
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2.3 Two-component plasma model

Z is the canonical partition function and U(R̃(i),~r0) is the potential energy of the
configuration given here by:

U(R̃(i), R̃(e),~r0) =
1
2

∑
(j 6=k)=1, α,β

uαβ(|~r
(α)
j − ~r(β)k |) +

∑
α,j

uαR(|~r0 − ~rαj |) (2.54)

in terms of the pair interaction potentials uαβ(r) and uαR(r). Here, the spherical
symmetry of interactions between the particles is assumed. The total electric field
~E(R̃(i), R̃(e),~r0) acting on the radiator is given by the superposition of all the ionic and
electronic single-particle microfields

~E(R̃(i), R̃(e),~r0) = −
~∇0U

zRe
=

Ni∑
j=1

~Ei(~r0 − ~rj
(i)) +

Ne∑
j=1

~Ee(~r0 − ~rj
(e))

=
Ni∑
j=1

ze

4πε0|~r0 − rj (i)|
2 r̂

i
0j −

Ne∑
j=1

e

4πε0|~r0 − rj (e)|
2 r̂

e
0j , (2.55)

where r̂α0j is a unit vector in the direction of ~r0 − ~r
(α)
j , α = e, i. ~∇0 is the gradient with

respect to ~r0.
This system takes into account both components including the electron-ion correlations
in a real plasma. As it was mentioned above, since we are interested in calculating
the EMD, (2.8), in a infinite system, the statistical average of any quantity becomes
translationally invariant with respect to ~r0 and the location of the test charge can be
chosen as the origin ~r0 = 0 without loss of generality.
In this work we apply the coupling parameter integration technique for a quantum

TCP generalized by Ortner et al. (Sadykova et al., 2011a) on a base of the method
earlier proposed by C. A. Iglesias for OCP in works (Iglesias, 1983; Iglesias and Lebowitz,
1984) and later. This approach is based on recognizing the similarity between the formal
expressions for the excess chemical potential and the Fourier transform of Q(~ε), and
exponential approximation. The Fourier transform of Q(~ε) is then expressed, without
any approximation, in terms of a two-body function which could be interpreted as a
“generalized” radial distribution function (RDF) G(~r,~k) involving the radiator and one
of the plasma particles. This is in a contrast to previous developments which require
knowledge of many-body functions (Baranger and Mozer, 1959; Mozer and Baranger,
1960), (Hooper, 1966), (Iglesias and Hooper, 1982; Hooper, 1966).

The normalized microfield distribution P (ε) (2.8) was introduced above in the Sec. 2.1
for the Holtsmark distribution. It has been expressed in terms of the Fourier transform
of Q(E) through

P (ε) =
2ε
π

∞∫
0

kTR(k) sin(εk)dk, (2.56)

and

TR(~k) =
1
Z

∫
Ω

exp[ı~k · ~E(R̃(i), R̃(e),~r0)]e
−βU(R̃(i),R̃(e),~r0)d~r0dR̃

(i)dR̃(e). (2.57)
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2 Electric microfield distributions

here R denotes the fact that the TCP electric field is produced at a radiator R.
Following the (2.57) the Fourier transform of the EMD probability density can be

alternatively represented as:

TR(~k) =
ZR(~k)

Z
, (2.58)

where
ZR(~k) =

∫
Ω
e−βU(R̃(i),R̃(e),~k)dR̃(i)dR̃(e), (2.59)

here Z is defined in Eq.(2.53). The function can be interpreted as the generalized
configurational partition function for a system with “potential energy” U(R̃(i), R̃(e),~k) =
U(R̃(i), R̃(e))− ıkBT (~k · ~E). To accomplish this we introduce the parameter λ which is
defined as the magnitude of the vector ~k = λk̂, where k̂ is a unit vector in the direction
of ~k.
From the definition of T (~k) in Eq. (2.58) we may write

lnTR(~k) = ln[ZR(λ = ~k)/ZR(λ = 0)]

=
∫ k

0
dλ
∂ lnZR(~k)

∂λ
=
∫ k

0
dλ
< (ık̂ · ~E) exp(ı~k · ~E) >

< exp(ı~k · ~E) >

= ık̂
∑
α

nα

∫ k

0
dλ

∫
d~r ~Eα(~r)[GαR(~r,λk̂)− 1]. (2.60)

Here ~k = k̂λ, ~Eα(~r) = zαer̂/4πε0(r(α))2 with ze = −1, zi = z is the single particle
either ionic or electrical fields. Inserting the electric fields into the Eq. (2.60) we will get
a more simplified view

lnTR(~k) = ık̂ne

∫ k

0
dλ

∫
d~r ~Ee(~r)[GiR(~r,~k)−GeR(~r,~k)]. (2.61)

GαR(~r,~k) represents the pair correlation functions between the radiator and the plasma
particles in a fictitious system whose interaction potential is given by the complex
quantity U(R̃(i), R̃(e),~k), i.e.,

GiR(~r1,~k) = Ω2

ZR(~k)

∫
Ω
e−βU(R̃(i),R̃(e),~k)dR̃

(i)
1 dR̃(e), (2.62)

GeR(~r1,~k) = Ω2

ZR(~k)

∫
Ω
e−βU(R̃(i),R̃(e),~k)dR̃

(e)
1 dR̃(i). (2.63)

Here R̃(α)
s = ΠNα

a=s+1d~r
(α)
a is the reduced volume element in a phase space which does

not involve the particles 1, 2, · · ·, s of plasma species α. At ~k → 0 they coincide with the
actual RDF gαR :

gαR(~r1) =
Ω2

Z

∫
Ω
e−βU(R̃(i),R̃(e))dR̃

(α)
1 dR̃(α∗). (2.64)

Here, U(R̃(i), R̃(e)) does not depend on ~r0, α∗ = i if α = e and α∗ = e if α = i. The pair
correlation functions given by Eq. (2.64) describe coupling between the radiator (ion)
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2.3 Two-component plasma model

and plasma particles. When the coupling between the radiator and particles vanishes,
e.g. radiator is a neutral point, the pair correlation function behaves like gαR → 1. If
the radiator is a particle of plasma species β these correlation functions coincide with
the RDF of bulk plasma, gαR ≡ gαβ.
The central problem is now the evaluation of GαR(~r,~k). This complex correlation

function must be known in the interval from 0 to k. Usually approximation schemes of
the type commonly employed in the liquid theory are applied.

As it was mentioned in Sec. 2.2, many of these schemes are based on “thermodynamic
perturbation theory” (Zwanzig, 1954). Here we apply the exponential approximation
(Iglesias et al., 1985; Iglesias and Lebowitz, 1984; Iglesias et al., 1983; Iglesias, 1983),
(Andersen and Chandler, 1972). In TCP case, the electric fields ~Eα(~r) may be interpreted
as effective electric fields in the fictitious TCP system which have no dependence on ~k.
Taking into account that < ~E >= 0 we obtain

~Eα = ~Eα +
∑
β

nβ

∫
d~r1 ~Eβ(~r1)[gαβ(|~r− ~r1|)− 1]. (2.65)

Since gαR(r) depends only on |~r − ~r1| the effective electric fields in (2.65) can be
represented as ~Eα(~r) = r̂Eα. The single particle electric fields can be written as ~Eα = r̂Eα.
In the weak or moderately coupling regime (Γii → 0) the pair correlation function (RDF)
in the TCP can be given by the linear Debye-Hückel approximation (Kraeft et al., 1986)

gαR(r) ≈ 1− zαzRe
2

kBTr
exp(−r/rD). (2.66)

Inserting Eq. (2.66) into (2.65) we get the following effective Debye screened field

Eα(r) =
zαe

r2 (1 + χr) exp(−χr). (2.67)

here α = e, i. We would like to point out that the use of Debye-Hückel form (2.38)
for gαR(r) and electronic effective fields at high Γii should be questioned when the
quantum-mechanical diffraction effects and ion shell structure play a significant role
in their correlations. That is why in our works for screened particle interactions we
used the screened Deutsch (Sadykova et al., 2004), Kelbg (Sadykova and Ebeling, 2007),
(Sadykova et al., 2005) potentials and derived the screened Hellmann-Gurskii-Krasko
pseudopotentials which in addition to the quantum diffraction effects and symmetry take
into account the ion shell structure (Sadykova et al., 2009a,b). The derivation of HGK
pseudopotential is described later in Subsec. 4.1.2 and in Sec. 3.1 on P. 42.
Alternatively this can be done on the basis of the potential of mean force approximation
(PMF) with the help of logarithmic derivative of the actual RDF (Yan and Ichimaru,
1986), (Nersisyan et al., 2005).

We now use the exponential approximation (Iglesias et al., 1983) and make the ansatz

GαR(~r,~k) = gαR(r) exp[ı~k · ~Eα(r)] (2.68)
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2 Electric microfield distributions

and integrate (2.60) with respect to λ to find

lnTR(k) =
∑
α

4πnα
∞∫

0

Eα(r)

[
j0 (kEα(r))− 1

Eα(r)

]
gαR(r)r

2dr, (2.69)

j0 is the spherical Bessel function of order zero and the integrations over the parameter
λ and the angles have been done. Equation (2.69) is the main results of Ortner et al.
(Ortner et al., 2000). gαR(r) represents the radial distribution function for a screened ion
and electron subsystems in TCP case. In this work we instead apply the classical approach
based on the BBGKY chain of Bogoljubov equations (Bogoljubov, 1946, 1962) to get
screened fields directly from the screened Hellmann-Gurskii-Krasko pseudopotentials.
Correspondingly, the actual radial distribution function is estimated as following

gαR(r) = exp
(
−ΦαR(r)

kBT

)
(2.70)

where ΦαR(r) represents either the screened Hellmann-Gurskii-Krasko pseudopotential
in a weakly and moderately coupled plasma approximation Eqs. (4.15-4.19) in the Sec.
4.1.2 or the screened Kelbg Eq. (4.24) in the Sec. 3.1. If the radiator represents one of
the ions zR > 0 then ΦαR corresponds to Φαi. Inserting (2.70) and (2.67) into (2.68)
the generalized RDF will take the following view

GαR(~r,~k) = exp
(
−ΦαR(r)

kBT

)
exp[ı~k · r̂ zαe

r2 (1 + χr) exp(−χr)] (2.71)

In our works (Sadykova and Ebeling, 2007; Sadykova et al., 2009a,b, 2011a) we used the
Eqs. (2.61), (2.71).
In order to improve the results in moderately and stronger coupled plasma approximation
we substituted the expressions for the screened fields (4.24) by the Eqs. (4.15-4.19) in
the Sec. 4.1.2 (Sadykova et al., 2011a), whereas the effective fields can be calculated as
following

~Eα = − 1
zRe

~∇rΦαR(r), (2.72)

here for better improvement the ΦαR(r) (α = e or i) the equations (4.15)- (4.19) in the
Sec. 4.1.2 should be used.
It is now possible to evaluate TR(k) from Eqs. (2.69) in terms of the radial distribution
function (2.70), screened Hellmann-Gurskii-Krasko pseudopotentials (4.24) (Sadykova
et al., 2009a) in Sec. 4.1.2, screened Kelbg Eqs. (4.15-4.19) in the Sec. 3.1 and effective
fields (2.67).
Let us say few words about the APEX approach. Iglesias, Lebowitz and MacGowan

proposed the APEX scheme for the classical OCP with bare Coulomb interaction. In
order to fulfill the exact second moment < E2 >OCP= kBTne/zRε0, Eq. (2.44) must
take the form ∞∫

0

Ei(r)giR(r)dr =
kBT

zRe
, (2.73)

where Ei is assumed to take the Debye-Hückel-type screened interaction with the free
adjustable parameter satisfying the relation (2.73). The resulting curves showed excellent
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2.3 Two-component plasma model

agreement with the computer simulation MD and MC data even at high Γee. However,
one encounters the difficulties when this method is applied for a TCP plasma, by treating
the Debye-Hückel-type interaction separately for the electrons and ions and introducing
two adjustable parameters. Then the second moment rule (2.73)for TCP becomes
ambiguous since it allows for many different choices of the adjustable screening lengths.
This problem can be solved for ionic mixtures by requiring that the second moment rule
is satisfied satisfied species by species (Iglesias and Lebowitz, 1984; Iglesias et al., 1985).

2.3.1 The second moment
As it has been mentioned above a knowledge of moment sum rule is often useful in
developing approximation schemes for fluids and liquids.
The second moment within the exponential approximation (2.68) can be found from

(2.69) in the limit k → 0. It yields (Yan and Ichimaru, 1986)

< E2 >TCP=
∑
α

4πnα
∞∫

0

Eα(r)Eα(r)gαR(r)r2dr, (2.74)

Let us consider now the exact expression for the second moment of the microfield
distribution in TCP and for a charged radiator. The second moment can be written as
following

< E2 >=
1

(zRe)2 <
~∇0U · ~∇0U >, (2.75)

where ~∇0 is the gradient with respect to ~r0 and the average is taken over the canonical
ensemble defined in (2.1). Noting that e−U/kBT (~∇0U ) = −kBT (~∇0e

−U/kBT ), substitut-
ing this into Eq. (2.75), integrating by parts, and setting the surface terms equal to zero
yields

< E2 >=
kBT

(zRe)2 < ∇0
2U >= −kBT

zRe
< ~∇0 · ~E > (2.76)

Inserting (2.55) and ~∇ · ~Eα(~r) = −(1/r2)[r2u
′
αR/zRe]

′ into (2.76), taking advantage of
Poisson’s equation and using the translational symmetry, we have (Nersisyan et al., 2005)

< E2 >= −kBT4π
z2
Re

2

(∫ ∞
0

[r2u
′
iR]
′
nigiR(r) +

∫ ∞
0

[r2u
′
eR]
′
negeR(r)

)
dr, (2.77)

The functions gαR(r) have been described above, see Eq. (2.64), where nαgαR(r) is the
density of plasma particles α at a distance r from the radiator. The interaction potential
U(R̃(α)) does not depend on ~r0. The exact second moment of the EMD (2.77) must be
fulfilled by (2.74).
To get the effective fields for TCP we applied the Debye-Hückel ansatz (2.67) which

provides a quite good agreement with the computer simulation data for weakly or
moderately coupled plasma when the coupling parameter Γii . 1. Using Eq. (2.70) we
can represent this field as

Eα =
kBT

zRe

∂

∂r
[ln gαR(r)]. (2.78)

Inserting Eq. (2.78) into (2.74) automatically satisfies the sum rule (2.77) without any
adjustable parameter. Summarizing all the said above, we can calculate the EMDs with
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2 Electric microfield distributions

the exact second moment using the Eq. (2.56). In dimensionless electric field units we
get

P (β) =
2β
π

∞∫
0

k∗TR(k
∗) sin(βk∗)dk∗,

where β = E/E0 and k∗ = kE0, E0 = ze
4πε0rei2

with rei being the electron-ion spacing
and Eqs. (2.56), (2.69), (2.70) and (2.67). This approach is based on integral-equation
method, exponential approximation (2.68) and classical Bogoljubov approach (BBGKY)
for screened Hellmann-Gurskii-Krasko pseudopotentials (4.24) (Sadykova et al., 2009a)
in Sec. 4.1.2, screened Kelbg Eqs. (4.15-4.19) in the Sec. 3.1.

The TCP Coulomb system

Let us consider now the ionic TCP model. If the interaction between particles is described
by the classical bare Coulomb potential, then taking advantage of Poisson’s equation we
can write

∇0
2U =

zRe
2

ε0
(
Ne∑
l=1

δ(~rl)− z
Ni∑
j=1

δ(~rj)) (2.79)

Inserting this equation into (2.76) and taking into account Eq. (2.77) we get

< E2 >TCP =
kBTne
ε0zR

∫ ∞
0

δ(r)geR(r)dr−
kBTzni
ε0zR

∫ ∞
0

δ(r)giR(r)dr

=
kBTne
ε0zR

(geR(0)− giR(0)), (2.80)

Here is assumed that for zR > 0, giR(0) = 0, Eq. (2.64), if quantum-diffraction effects
are negligible for the ions, whereas geR(r) diverges at small distances for a bare Coulomb
potential. This shows that the second moment of the microfield distribution does not
exist for a classical Coulomb TCP. But in the OCP limit geR(0) = 1 one recovers the
result < E2 >OCP= kBTne/zRε0 for classical ionic OCP.

2.3.2 The tails

As it was shown above in the section 2.1, when the correlation between the particles
are not taken into account, i.e. Γ = 0, then in the case of very strong fields at β →∞,
the Holtsmark distribution has the asymptote P (β) ≈ 1.5β−5/2, which is close to the
asymptote of the nearest neighbor field distribution obtained by Lewis and Margenau
for low-frequency model at an ion (Lewis and Margenau, 1958)

P (β) = Cβ−5/2 exp
(
−Γii

√
β
) [

1 + C

12
Γii
β

+ · · ·
]

, (2.81)

where C =
√

2
π

15
8 .

Later on, M. Baranger and B. Mozer introduced the pair correlations at Γ . 1 into the
high-frequency model at a neutral point and got the following asymptote (Baranger and
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2.3 Two-component plasma model

Mozer, 1959)

P (β) = PH(β)|β→∞− (ree/rDe)β−7/2(0.5453(ree/rDe)+ 11.78β−1 + 114.6β−5/2 + · · ·).
(2.82)

where PH(β)|β→∞ represents the Holtsmark asymptote.
In the opposite limit of extremely strong correlations Γ → ∞, the Mayer model is
applicable, in which every ion is assumed to oscillate independently of the others around
its equilibrium position at the ion-sphere center (Mayer, 1947), (Broyles, 1957, 1955).
The model for the charged radiator yields

P (β) =
1

2
√
πA3/2 Γii3/2β2 exp

(
−β

2Γii
4A

)
, (2.83)

where A = 15
4

√
2
π

1
3! . The Mayer model fails in the strong-field limit, because in this

case one should consider a test ion that lies at a very short distance r ∝ β−1/2 from the
nearest perturbing ion. Then the geometrical and Boltzmann factors give at β → ∞
P (β) ∼ β−5/2 exp(−Γii

√
β). A. Y. Potekhin et. al. derived a more accurate functional

form of the asymptotic behavior of P (β) at large β (Potekhin et al., 2002)

P (β) ∼ Bβ−5/2 exp
(
−Cβ1/2 − β−3/2

)
. (2.84)

with the adjustable parameters (C, B). These parameters can be fitted using the
computer simulation tools like Molecular Dynamics and Monte-Carlo.
Let us consider now the limit limβ→∞P (β). In this case the stationary phase limit can
be applied (Feller, 1970), meaning that l∗ are negligibly small . Then, consider the term
(2.69) at the limit k → 0:

lim
k→0

lnT = −k
2

6 < E2 >TCP , (2.85)

here < E2 >TCP is the second moment of the TCP defined by Eq. (2.74). Inserting Eq.
(2.85) into the Eq. (2.56), skipping “TCP”-subscript and integrating over k we get the
following asymptote

lim
β→∞

P (β) = 3
√

6
π

β2

< β2 >3/2 exp
(
−3

2
β2

< β2 >

)
, (2.86)

where the integral
∞∫
0
x · e−p2x2

sin(ax)dx = a
√
π

4p3 e
−a2
4p2 have been used (Gradstejn and

Ryzhik, 1971) and the expression P (β) = E0P (E) has been taken into account.
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3 Electric microfield distributions in
electron one-component plasmas and
mass-symmetrical electron-positron
two-component plasmas

In calculations of the electric microfield distributions interaction potentials play a crucial
role. Usually, for simplicity, one considers the charges in a plasma medium as points and
do not take into account the ion shell structure.

3.1 Pseudopotential models for point charges one-component
and two-component plasmas. Screened Deutsch, Kelbg
and generalized Kelbg models

Coulomb potential

Often, the Coulomb potential is used.

ϕab(r) =
eaeb
4πε0

1
r

, (3.1)

where ea, eb are the electric charges of the interacting particles. There is a well known
difficulty in determination of various properties of dense plasma connected with the
long-range character of bare Coulomb interacting particles. This difficulty (singularity)
can be avoided by taking into account the collective effects connected with the great
number of interacting particles, i.e. screening effects.

Debye potential

The screening is a fundamental property of a plasma. The Coulomb potential of a
charged particle immersed into a plasma is shielded out at the distance of the order of
Debye length

1
r2
D

=
∑
a=e,i

4πnaza2e2

4πε0kBT
, (3.2)

resulting in a well known screened Debye-Hückel potential (Falkenhagen, 1971):

Φab(r) =
eaeb
4πε0

e−r/rD

r
. (3.3)
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3 EMDs in electron OCPs and mass-symmetrical electron-positron TCPs

In the Figure 3.1 the Coulomb potential compared to the screened Debye-Hückel
potential. As one can easily see at large distances the potentials start to deviate from
each other describing in this way the screening effect and the screening is effectively
completed over a distance of the order of 2rB ≈ rD. One should notice, the Coulomb
and Deutsch potential do make no difference between the types of interactions except the
direction of interaction, i.e |Φei(r)| = |Φee(r)| = |Φii(r)|. Furthermore, we would like
to point out that for alkali and Be2+ plasmas, studied in this work, the Coulombic law
is not applicable, since there are strong deviations from Coulomb law at small distances
due to the influence of the core electrons.

0,0 0,4 0,8 1,2 1,6 2,0
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i i
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ei
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i i 
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a

R=r/rB
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Debye

Figure 3.1: Comparison between the Coulomb and Debye electron-electron Φee, electron-ion
Φei and ion-ion Φii potentials of semiclassical Hydrogen-like point charges plasma
against the dimensionless distance R = r/rB at T = 30000 K, 1 · 1028 m−3, Γii = 2.

Deutsch pseudopotential

When plasma density increases the ratio between the Landau length and the thermal
de Broglie wave length decreases and the quantum-mechanical effects begin to play
an important role. To determine the thermodynamic and transport properties of
semiclassical fully ionized plasmas effective potentials (pseudopotentials) simulating
quantum effects of diffraction and symmetry are widely used (Kraeft et al., 1986),
(Hansen and McDonald, 1981, 1990). In Particular, C. Deutsch obtained the following
pseudopotential taking into account diffraction (Deutsch, 1977):

ϕab =
eaeb

4πε0r

[
1− exp

(
− r

λab

)]
, (3.4)
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where λab = h̄/
√

2πµabkBT is the electron thermal de-Broglie wavelength, µab =
mamb/(ma +mb) is the reduced mass of a− b pair. This pseudopotential was improved
later taking into account the symmetry affects as well (Minoo et al., 1981):

ϕab =
eaeb

4πε0r

[
1− exp

(
− r

λab

)]
+ δaeδbekBT ln 2 exp

(
− r2

λ2
eeπ ln 2

)
, (3.5)

where δab is the Kronecker delta.

Screened Deutsch pseudopotential

It is of high interest to construct a pseudopotential model of particle interaction in the
dense high-temperature plasma, taking into account both the quantum-mechanical effects
at short distances and the field screening effects at large distances. In (Arkhipov et al.,
2000) the authors developed the approach based on the classical Bogoljubov-Born-Green-
Kirkwood-Yvon (BBGKY) chain (Bogoljubov, 1946, 1962) for the equilibrium distribution
functions where the pseudopotential (3.5) was taken as a micro-pseudopotential. Follow-
ing (Ecker, 1972), the authors (Arkhipov et al., 2000) deduced the following system of
integral-differential equations for the pseudopotential Φab in the framework of the pair
correlation approximation:

∆iΦab(~r
a
i ,~rbj) = ∆iϕab(~rai ,~rbj)−

∑
c=e,i

nc
kBT

∫
d~rcm∆iϕac(~rai ,~rcj)Φcb(~r

c
m,~rbj) (3.6)

Here ∆i denotes the Laplace operator acting on the coordinates of the ith particle. ϕab(r)
represents the Deutsch pseudopotential.

In Fourier space this system of integral-differential equations (3.6) turns into a system
of linear algebraic equations:

Φab(k) = ϕab(k)−
1

kBT
[neϕae(k)Φeb(k) + niϕai(k)Φib(k)] (3.7)

where a, b = i, e. Solving the system (3.7) for two-component plasma one can derive the
following expressions for the Fourier transform Φab(k) of the pseudopotential Φab(r):

Φei(k) =
ze2

ε0∆
1

k2(1 + k2λ2
ei)

, (3.8)

Φee(k) =
e2

ε0∆

{
1

k2(1 + k2λee
2)

+
1

k4rDi2

[
1

(1 + k2λee
2)(1 + k2λii

2)
− 1

(1 + k2λei
2)2

]

+ A

(
1 + 1

k2rDi2(1 + k2λii
2)

)
exp

(
−k

2

4b

)}
, (3.9)
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Φii(k) =
z2e2

ε0∆

{
1

k2(1 + k2λii
2)

+
1

k4rDe2

[
1

(1 + k2λee
2)(1 + k2λii

2)
− 1

(1 + k2λei
2)2

]

+ +
A

k2rDe2(1 + k2λii
2)

exp
(
−k

2

4b

)}
. (3.10)

Here rDe, rDi are the Debye radius of electrons and ions respectively, with 1/rDi2 =
z2e2ni/(ε0kBT ),1/rDe2 = e2ne/(ε0kBT ), b = (λee

2π ln 2)−1, A = kBT ln 2π3/2b−3/2·
·ε0/e2 and

∆ =1 + 1
k2rDe2(1 + k2λee

2)
+

1
k2rDi2(1 + k2λii

2)

+
1

k4rDe2rDi2

[
1

(1 + k2λee
2)(1 + k2λii

2)
− 1

(1 + k2λei
2)2

]

+
A

rDe2

(
1 + 1

k2rDi2(1 + k2λii
2)

)
exp

(
−k

2

4b

)
. (3.11)

The pseudopotential Φab(r) can be restored from (3.8-3.11) by Fourier transformation

Φab(r) =
1

2π2r

∫
Φab(k)k sin(kr)dk (3.12)

Let us consider the limiting cases of the expressions (3.8-3.9).

A. If rDe, rDi →∞, then
Φab(r) = ϕab(r) (3.13)

When the screening effects are negligible, the pseudopotential Φab(r) coincides
with the pseudopotential (3.5).

B. If λee, λei, λii → 0, then

Φab(r) =
eaeb
4πε0

e−r/rD

r
, (3.14)

where
1
rD2 =

∑
c=e,i

ec
2nc

ε0kBT
. (3.15)

Eq. (3.14) means when quantum-mechanical effects are negligible, then the pseu-
dopotential Φab(r) coincides with the Debye-Hückel one.

C. If rDe, rDi →∞, λee, λei, λii → 0, then

Φab(r) =
eaeb

4πε0r
. (3.16)

When the quantum-mechanical and screening field effects are negligible, then the
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pseudopotential Φab(r) coincides with the Coulomb potential.

D. If λee,λei,λii � rDe, rDi, then for e− i and i− i

Φab(r) =
eaeb

4πε0r

[
e−r/rD − e−r/λab

]
+ δaeδbekBT ln 2 exp

(
− r2

λ2
eeπ ln 2

)
. (3.17)

These expressions differ from the potentials (3.5) in the presence of the term exp(−r/rD)
term in the brackets instead of 1. This case corresponds to the weakly coupled plasmas
when Γ� 1. The derived expressions (3.8-3.11) differ from the bare pseudopotentials
(3.5) due to the screening terms. The present approximation is restricted to the constraint
Γ . 1 due to the use of linearization process at the derivation of integral-differential
equation (3.6).
In the Figure 3.2 the screened Deutsch pseudopotential (3.8-3.11) compared to the

Deutsch (3.5) pseudopotential, Coulomb (3.1) and Debye (3.3) potentials are shown.
One can easily see that there is a considerable difference between the Coulomb, Debye
and Deutsch pseudo-potentials. First of all, the Deutsch pseudopotential in comparison
with the Debye and Coulomb potentials is not symmetric with respect to the type of
interactions, i.e. |Φee(r)| 6= |Φei(r)| 6= |Φii(r)|. The Coulomb and Debye pseudopoten-
tials are infinite at r = 0, whereas the Deutsch and screened Deutsch pseudopotentials
due to the quantum-mechanical effects of diffraction are finite. At large distances the
Coulomb and Deutsch pseudo-potentials coincide. The same is applied to the Debye
and screened Deutsch pseudo-potentials. At the high value of Γ there is a considerable
difference between the Coulomb and Debye pseudo-potentials as well as between the
Deutsch and screened Deutsch pseudopotentials. This can be explained by that fact
that at high Γ the screening taken into account in the Debye and screened Deutsch
pseudopotentials starts to play a significant role.

Let us now restore the screened a− b Deutsch pseudopotentials Φab(r) by the Fourier
transformation (3.12) and neglect the symmetry effects, ionic screening rDi → ∞ for
simplicity, see the Appendix 7. Then, the Φab(r) will split into three types of pseudopo-
tentials in dependence on the parameter range of consideration (Sadykova et al., 2004).
For the Φee(r) we have:

1. When C1 = rDe
λee

< 2 or Γee > 1
2
πrs
3

Φee(r) =
e2C2

1
4πε02ab

e
−a r

rDe sin
(
b r
rDe

)
r

, (3.18)

where a =
√
C1
√

2+C1
2 , b =

√
C1
√

2−C1
2 .

2. When C1 = rDe
λee

= 2 or Γee = 1
2

ßrs
3

Φee(r) =

√
2e2

4πε0rDe
e
−
√

2 r
rDe , (3.19)
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Figure 3.2: Comparison between electron-electron (a), electron-ion (b), ion-ion (c) Coulomb
(3.1), Debye (3.3) potentials, Deutsch (3.5) and Screened Deutsch (3.8-3.11) pseu-
dopotentials in Hartree units of semiclassical Hydrogen plasma against the dimen-
sionless distance R = r/rB at T = 30000 K, 1 · 1028 m−3, Γii = 2.
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3. When C1 = rDe
λee

> 2 or Γee <
1
2
πrs

3

Φee(r) =
e2C2

1
4πε0rDe2(A1 −A2)

e−
√
A1r − e−

√
A2r

r
, (3.20)

where A1 =
C1(C1+

√
C2

1−4)
2rDe2 , A2 =

C1(C1−
√
C2

1−4)
2rDe2 .

Eq. 3.18 possesses the oscillating sin(r) function what demonstrates that at higher
plasma density or low rs the local minima and maxima arise which are due to the
short-range formation as a result of competition between the quantum-mechanical and
screening field effects when the scales of their action are comparable. This is demon-
strated in the Figure 3.3, where the fully restored Φee(r) pseudopotential (3.9), (3.12)
at C1 = rDe

λee
< 2 is plotted. As one can easily see, the Debye potential does not reflect

such short-order formation.
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Figure 3.3: Comparison between the Debye (3.3) and Screened Deutsch (3.9), (3.12) pseudo-
potentials of semiclassical Hydrogen-like point charges plasma against the dimen-
sionless distance R = r/rB at T = 5248578 K and ne = 0.2 · 1027 cm−3.

For the Φii(r) we have:
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3 EMDs in electron OCPs and mass-symmetrical electron-positron TCPs

1. When C1 = rDe
λee

< 2 or Γee >
1
2
πrs

3

Φii(r) =
2z2e2

4πε0r
− z2e2

4πε0r
e
− r
λii − α z2e2

4πε0r
e
− r
λei − β z2e2

8πε0λei
e
− r
λei

+ γ
z2e2

4πε0r
e
−a r

rDe sin
(
b
r

rDe

)
+ θ

z2e2

4πε0r
e
−a r

rDe cos
(
b
r

rDe

)
, (3.21)

where a =
√
C1
√

2+C1
2 , b =

√
C1
√

2−C1
2 , α = C14−2C32(C32−C12)2

(C34−C12C32+C12)2 , β = C12−C32

C34−C12C32+C12 ,

γ = C1√
4−C12

(
C12(C22−1)

C24−C12C22+C12 + (2C34(2−C12)+4C32C12(C12−3)+C12(−C14+5C12−4))C34

2C14(C34−C12C32+C12)2

)
and θ = (−C34+2C32(C12−1)+C12(2−C12))C34

C12(C34−C12C32+C12)2 with C2 = rDe
λii

, C3 = rDe
λei

.

2. When C1 = rDe
λee

= 2 or Γee =
1
2
πrs

3

Φii(r) =
2z2e2

4πε0r
− z2e2

4πε0r
e
− r
λii − α z2e2

4πε0r
e
− r
λei − β z2e2

8πε0λei
e
− r
λei

+ γ

√
2z2e2

8πε0rDe
e
−
√

2r
rDe − θ z

2e2

4πε0r
e
−
√

2r
rDe , (3.22)

where α = 2(8−C32(C32−4)2)
(C32−2)4 , β = 4−C32

(C32−2)2 , γ =
(

4(C22−1)
(C22−2)2 + C36(4−C32)

8(C32−2)4

)
and θ =

C32−4
(C32−2)3 with C2 = rDe

λii
, C3 = rDe

λei
.

3. When C1 = rDe
λee

> 2 or Γee <
1
2
πrs

3

Φii(r) =
2z2e2

4πε0r
− z2e2

4πε0r
e
− r
λii − α z2e2

4πε0r
e
− r
λei − β z2e2

8πε0λei
e
− r
λei

+ γ
z2e2

4πε0r
e−
√
A1r − θ z

2e2

4πε0r
e−
√
A2r, (3.23)

where A1 =
C1(C1+

√
C2

1−4)
2rDe2 , A2 =

C1(C1−
√
C2

1−4)
2rDe2 , α = −2C36+4C34C12−2C32C14+C14

(C34−C12C32+C12)2 ,

β = C12−C32

C34−C12C32+C12 , γ = 2A2
λei

2A1(A1−A2)(1−λei2A1)
and θ = 2A1

λei
2A2(A1−A2)(1−λei2A2)

with C3 = rDe
λei

.

For the Φei(r) we have:

1. When C1 = rDe
λee

< 2 or Γee >
1
2
πrs

3

Φei(r) =− α
z2e2

4πε0r
e
− r
λei

− β z2e2

4πε0r
e
−a r

rDe sin
(
b
r

rDe

)
− γ z2e2

4πε0r
e
−a r

rDe cos
(
b
r

rDe

)
, (3.24)

where a =
√
C1
√

2+C1
2 , b =

√
C1
√

2−C1
2 , C2 = rDe

λii
, α = C32(C12−C32)

(C34−C12C32+C12)2 , β =
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C1√
4−C12

(
1 + 2−C12

C32

)
and γ = 1− C12

C32 with C3 = rDe
λei

.

2. When C1 = rDe
λee

= 2 or Γee =
1
2
πrs

3

Φei(r) = −α
z2e2

4πε0r
e
− r
λei − β

√
2z2e2

8πε0rDe
e
−
√

2r
rDe − γ z2e2

4πε0r
e
−
√

2r
rDe , (3.25)

where α = C32(4−C32)
(C32−2)2 , β = C32

C32−2 , and γ = C32(C32−4)
(C32−2)2 with C3 = rDe

λei
.

3. When C1 = rDe
λee

> 2 or Γee <
1
2
πrs

3

Φei(r) = −α
z2e2

4πε0r
e
− r
λei − β z2e2

4πε0r
e−
√
A1r + γ

z2e2

4πε0r
e−
√
A2r, (3.26)

where A1 =
C1(C1+

√
C2

1−4)
2rDe2 , A2 =

C1(C1−
√
C2

1−4)
2rDe2 , α = C32(C12−C32)

C34−C12C32+C12 , β =
A2

(A1−A2)(−1+λei2A1)
and γ = A1

(A1−A2)(−1+λei2A2)
with C3 = rDe

λei
.

We would like to note that the expressions (3.21-3.23) and (3.24-3.24) were for the first
time derived in this work.

Kelbg pseudopotential

Frequently the Kelbg pseudopotential, obtained by perturbational theory, is used:

ϕab(r) =
eaeb
4πε0

(
1− e−r2/λ2

ab

r
+

√
π

λab
(1− erf(r/λab))

)
, (3.27)

where λab = h̄/
√

2mabkBT is De Broglie wave length of relative motion of (a, b = e, i),
h̄ is the Planck constant and kB is the Boltzmann constant.
The Kelbg pseudopotential is a good approximation in the case of small interaction

parameters ξab = −(eaeb)/(4πε0kBTλab) if the interparticle distance r is sufficiently
large. In order to attain the correct behaviour also at small distances the corrected
(generalized) Kelbg pseudopotential defined in (Ebeling et al., 1999), (Wagenknecht
et al., 2001) should be used:

ϕab(r) =
eaeb
4πε0

1− e−r2/λ2
ab

r
+
eaeb
4πε0

√
π

λab
(1− erf(r/λab))− kBTÃab(ξab) exp(−(r/λab)2)

(3.28)
The corresponding coefficients for the electron-electron and for the electron-ion interaction
read:

Ãee =
√
π |ξee|+ ln

2
√
π |ξee|

∞∫
0

dyy exp(−y2)

exp(π |ξee|/y)− 1


Ãei = −

√
π |ξei|+ ln

√πξ3
ei(ς(3) + ς(5)ξ2

ei) + 4
√
πξei

∞∫
0

dyy exp(−y2)

1− exp(πξei/y)

 .

(3.29)
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Here ς(x) denotes Riemann’s Zeta-function.

Screened Kelbg pseudopotential

It is of great interest to get an analytical expression for the corrected screened Kelbg
pseudopotential Φab(r), which takes into account both quantum-mechanical effects of
diffraction as well as symmetry, coming from the different spin directions of particles,
and screening effects. In this work we apply again the Bogoljubov-Born-Green-Kirkwood-
Yvon method described in (Falkenhagen, 1971), which is primarily based on Bogoljubov’s
works (Bogoljubov, 1962). In the work (Sadykova et al., 2004) following H. Falkenhagen
we derived the screened Kelbg pseudopotential (3.27) in the framework of the classical
Bogoljubov approach for equillibrium distribution functions described on P. 42. Following
the derivation procedure of H. Falkenhagen, we write the BBGKY chain of Bogoljubov
RDF equations for a system of charged particles of species ai as following

kBT
∂

∂~rl
ga1···as + µga1···as

∂

∂~rl

∑
1≤i≤j≤s

ϕaiaj +
∑
as+1

nas+1

∫
∂ϕalas+1

∂~rl
ga1···as+1d~rs+1 = 0.

(3.30)
Here the charged particles located at ~r1, ··,~rs belong to the species a1, ··, as and ga1···as
means RDF (2.64), ϕalas+1 is a pair interaction potential between the particles (micro-
pseudo-potential). The equation (3.30) satisfies the equillibrium condition for the forces.
In the equation (3.30) the first term means a diffusion force, the second - a direct force
and the third one - the force taking into account the collective effects into account, all
acting on a l-th particle. In accordance with the Bogoljubov’s approach H. Falkenhagen
introduced the parameter µ = 1 at the second term which in dimensionless form of (3.30)
turns into µ = e2/(4πε0rDkBT ) and at the small densities µ ≤ 1 with rD being the
Debye radius. That is why Bogoljubov suggested to expand the RDF with respect to
this parameter. Let us introduce the irreducible correlation functions γa, γab, γabc:

ga = γa, gab = γaγb + µγab

gabc = γaγbγc + µ(γabγc + γacγb + γbcγa) + µ2γabc,
ga1···as = γa1γa2 · · · γas + µ(γa1a2γa3 · · · γas + · · ·) + · · ·+ µsγa1···as .

(3.31)

For homogeneous systems ga(~r) = γa(~r) = 1. We restrict ourselves only to the first
equation of the chain and put l = 1 then we have

kBT
∂gab
∂~r1

+ µgab
∂ϕab
∂~r1

+
∑
c

nc

∫
∂ϕac
∂~r1

gabcd~r3 = 0. (3.32)

Here a1 = a, a2 = b, a3 = c, · · ·. Inserting the irreducible correlation functions into Eq.
(3.32) we get

kBT
∂γab
∂~r1

+ (1 + µγab)
∂ϕab
∂~r1

+
∑
c

nc

∫
∂ϕac
∂~r1

(γab + γac + γbc + µγabc)d~r3 = 0. (3.33)
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Taking into account that lim|ri−rj |→∞ γab(~r1,~r2)→ 0, lim|ri−rj |→∞ γac(~r1,~r2)→ 0 and
lim|ri−rj |→∞ γabc(~r1,~r2,~r3)→ 0 we obtain the following

kBT
∂γab
∂~r1

+ (1 + µγab)
∂ϕab
∂~r1

+
∑
c

nc

∫
∂ϕac
∂~r1

(γbc + µγabc)d~r3 = 0. (3.34)

Similarly one can get the equations of the higher approximation order of correlation
functions.

Let us expand the irreducible correlation functions with respect to the parameter µ:

γab = γ
(0)
ab + µγ

(1)
ab + µ2γ

(2)
ab ,

γa1···as = γ
(0)
a1···as + µγ

(1)
a1···as + · · ·

(3.35)

In the first approximation order of correlation function when µ→ 0 the equation (3.34)
will turn into

kBT
∂γ

(0)
ab

∂~r1
+
∂ϕab
∂~r1

+
∑
c

nc

∫
∂ϕac
∂~r1

γ
(0)
bc d~r3 = 0. (3.36)

After integration, Eq. (3.36) will take the following look

kBTγ
(0)
ab (~r1,~r2) + ϕab(~r1,~r2) +

∑
c

nc

∫
ϕac(~r1,~r3)γ

(0)
bc (~r2,~r3)d~r3 = 0. (3.37)

Since the correlation functions depend only on the relative distance between the particles
we get

γab(~r1,~r2) = γab(~r2 − ~r1).

Introducing ~r = ~r2 − ~r1, ~r′ = ~r3 − ~r2 we obtain

kBTγ
(0)
ab (~r) + ϕab(~r) +

∑
c

nc

∫
ϕac(~r

′ + ~r)γ
(0)
bc (~r′)d~r′ = 0. (3.38)

In order to solve this set of equations we will make the Foutier-ansatz:

γ
(0)
ab (~r) =

1
(2π)3

∫
eı
~k·~rγ

(0)
ab (

~k)d~k,

ϕab(|~r|) =
1

(2π)3

∫
eı
~k·~rϕab(~k)d~k.

(3.39)

Inserting the latter we get

1
(2π)3

∫
eı
~k·~r{kBTγ

(0)
ab (

~k) + ϕab(~k)}d~k+
∑
c

nc

∫ ∫
eı
~k·(~r′+~r)ϕac(~k)γ

(0)
bc (~r′)d~kdr′ = 0.

(3.40)
Taking into account

γ
(0)
bc (~k) =

∫
e−ı

~k·~rγ
(0)
bc (~r)d~r, (3.41)
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and γ
(0)
bc (−~r′′) = γ

(0)
cb (~r′′), making a transformation of the coordinates r′′ = −r′ we

become

1
(2π)3

∫
eı
~k·~r{kBTγ

(0)
ab (

~k) + ϕab(~k) +
∑
c

ncϕac(~k)γ
(0)
cb (~k)} = 0. (3.42)

Since r is arbitrary we can write

kBTγ
(0)
ab (

~k) + ϕab(~k) +
∑
c

ncϕac(~k)γ
(0)
cb (~k) = 0. (3.43)

This is the main result of the BBGKY’s chains.
In a weakly coupled limit the effective potentials taking into account the collective

effects can be obtained from the RDF (2.70), similarly to (2.66)

gab(r) ≈ 1− Φab(r)

kBT
. (3.44)

Having compared this equation with (3.31) we find that Φab(r) = −γ(0)ab (r) · kBT or
Φab(k) = −γ(0)ab (k) · kBT . Inserting this into Eq. (3.43), presuming that γ(0)ab (r) =

eaebγ
(0)(r), ϕ(0)

ab (r) = eaebϕ
(0)(r) and making the inverse Fourier transformation we’ll

get

Φab(r) =
eaeb
4πε0

1
2π2r

∞∫
0

4πkϕab(k) sin(kr)
4π+ χ2ϕab(k)

dk, (3.45)

with

ϕab(k) =
8π
k3λab

exp(−λ2
abk

2/4)
kλab/2∫

0

exp(t2)dt, (3.46)

and
χ2 =

1
r2
D

=
∑
a

nae
2
a

ε0kBT
, a = e, i. (3.47)

Here ϕab(k) represents the Fourier transformation of 4πε0ϕab(r)/(eaeb) where ϕab(r) is
the Kelbg pseudopotential (3.27) and rD is the Debye screening radius. This screened
Kelbg pseudopotential can be calculated numerically.
Unfortunately, this method does not take into account the difference between λee

and λei. In order to take these differences into account for electron-ion system taking
into account three particle correlations we get the following system of linear algebraic
equations

Φab(~k) = ϕab(~k)−
1

kBT

[
neϕae(~k)Φeb(~k) + niϕai(~k)Φib(~k)

]
. (3.48)

This system of equations is identical with (3.7) which follows from (3.6). The system of
equations (3.6) was deduced in accordance with the Bogoljubov’s approach using the
continuity equation for the RDF of a system being in a thermodynamic equillibrium.
In the Figure 3.4 the comparison among the Kelbg (3.27), Corrected Kelbg 3.28

and Screened Kelbg (3.45) pseudopotentials is shown. It should be noticed that the
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Figure 3.4: Comparison between the Kelbg (3.27), Corrected Kelbg 3.28 and Screened Kelbg
(3.45) pseudopotentials of semiclassical Hydrogen-like point charges plasma against
the dimensionless distance R = r/rL at T = 30000 K and various concentrations:
1: ne = 1019 cm−3, Γee = 0.2; 2: ne = 0.7 · 1021 cm−3, Γee = 0.8; 3: ne = 2.4 · 1021

cm−3, Γee = 1.2; 4: ne = 1022 cm−3, Γee = 2.
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3 EMDs in electron OCPs and mass-symmetrical electron-positron TCPs

pseudopotential is not symmetric, i.e. |Φee(r)| 6= |Φei(r)|. At such a high temperature
there is no observable difference between the Kelbg, corrected Kelbg and screened Kelbg
at the low Γee = 0.2 pseudopotentials, whereas the screened Kelbg pseudopotential
deviates from them with an increase of the density and coupling parameter Γee. This
can be explained by that fact that with an increase of the density the screening effects
start to play a significant role.

3.2 Electric microfield distributions at a charged and neutral
particles in one-component plasmas

For simplicity we restrict ourselves to the case of a high-frequency OCP with the electron
density n− = ne. We will calculate here the electric microfield acting on electrons
in OCP including quantum effects. The method which is used for the calculation is
coupling-parameter integration technique proposed by Iglesias (Iglesias, 1983). The
method is described in the section 2.2. In the semiclassical system the quantum system
is modelled by effective potential ϕab(r), where the short range part of the effective
potential ϕab(r) Eq. (3.27) cuts the short-range divergency of the Coulomb potential. We
would like to underline that a correct account of the short-range electron-ion interactions
is very essential for an understanding and especially of the high field tail of the electric
microfields in the plasma. Usually one considers the microfield on a place in vacuum and
assumes that this is at least approximately valid also at the place of an atom or molecule.
Here we locate an electron at the place where the field is calculated. However there is
an open problem: We can not make in our framework an explicit difference between free
and bound electrons.

The final calculation equation derived in the section 2.2 on the page 22 for the microfield
probability distribution function (2.49) at an electron is

P (β) =
2β
π

∞∫
0

k∗Te(k
∗) sin(βk∗)dk∗.

Here Te(l) is the Fourier transform of the electric microfield distribution Q =< exp(ı~k ·
~E) > with ~E being the electronic electric microfield, β = ε/ε0, k∗ = kε0, ε0 =
e/(4πε0r

2
ee) = en2/3

e /((36π)1/3ε0).
The Fourier transform of the electric microfield distribution Te(l) is calculated using

Eq. (2.33) or (2.42) where the generalized two-body correlation function G(~r,~k) entering
Te(l) is calculated using Eqs. (2.41) with (2.43) and (2.40). The pair correlation function
gαR(r) was determined with the help of the expressions (3.45) in the Sec. 3.1 for the
screened Kelbg pseudopotential obtained in (Sadykova and Ebeling, 2007).
The results of EMD calculations based on (2.49) for the parameter sets shown in the

Table 3.1 are presented in Figs. 3.5. These parameters are beyond the degeneration
border (ne ·Λ3

ee < 1) and can be treated classically. It is clearly seen in Fig. 3.5 that
at relatively small nonideality Γee = 0.4 and density there is a small deviation between
the curve obtained in the framework of the Iglesias model and Molecular Dynamics
simulation (MD) made using the corrected Kelbg pseudopotential. At such low densities
and high temperatures the contribution of correlation and quantum effects is negligible.
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3.3 EMDs at a charged and a neutral particles in electron-positron TCPs

Table 3.1: Plasma Parameters of consideration

rs 2 2 2

Γee 0.1 0.2 0.4

ne = ni, 1023 cm−3 2 2 2

T , 104K 160 78.83 39.4

The Kelbg pseudopotential deviates slightly from the screened one as to be seen in Fig.
3.4. However, the curves are still shifted toward the lower field direction with respect to
the Holtsmark distribution. When density and nonideality increase, correlation effects
start to play an important role leading to the shift in a direction of lower fields. This
fact one can explain by repulsive forces with an increase of interactive forces, i.e. Γee.
The EMD curves measured at an neutral point is presented for comparison. As one can
see it is less pronounced and has a fatter tail (region of high fields). Such tail behaviour
can be explained by that fact that electron can approach the neutral point closer than
the electron leading to a higher field.
We also made study of the EMDs measured at an electron in electron OCP in the

framework of the screened Deutsch model (3.18-3.20) described in the Sec. 3.1, see
(Sadykova et al., 2004). The study showed similar behaviour of EMDs with respect
to the increase of Γee: increase of the plasma density and coupling parameter leads to
considerable shifts of EMDs’ peaks toward the weaker fields as well as to increase of
their magnitudes. However, when either plasma density or coupling parameter is fixed
and small enough while another one changes in a range of low magnitudes, the shifts are
not essentially large (Sadykova et al., 2005).

3.3 Electric microfield distributions at a charged and a neutral
particles in electron-positron two-component plasmas

For simplicity we restrict ourselves to the case of a TCP which is anti-symmetric
with respect to the charges e− = −e+ and symmetrical with respect to the densities
n+ = np = n− = ne and masses m− = me = m+ = mp. We will calculate here the
electric microfield acting on electrons in TCP including quantum effects in comparison to
the corresponding high-frequency OCP case. The method which is used for the calculation
is the generalized coupling-parameter integration technique for two-component semi-
classical plasmas introduced by Ortner et al. (Ortner et al., 2000) described in the
section 2.3. In the semiclassical system the quantum system is modelled by effective
potential ϕab(r), where the short range part of the effective potential ϕab(r) Eq. (3.27)
cuts the short-range divergency of the Coulomb potential. We would like to underline
again that the inclusion of both components into the theory and a correct account of
the short-range electron-positron interactions, is very essential for an understanding of
the high field tail of the electric microfields in the plasma. Usually one considers the
microfield on a place in vacuum and assumes that this is at least approximately valid
also at the place of an atom or molecule. Here we locate an electron at the place where
the field is calculated. However there is an open problem: We can not make in our
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3 EMDs in electron OCPs and mass-symmetrical electron-positron TCPs
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Figure 3.5: Electric microfield distributions an electron for OCP plasmas at T = 394 000 K
and Γee = 0.1, 0.2, 0.4. The EMD curve measured at an electron at Γee = 0.4 and
T = 394 000 K (Sadykova and Ebeling, 2007) is compared to MD results at an
electron and neutral point obtained in the present work. The Holtsmark distribution
is also shown for comparison.

framework an explicit difference between free and bound electrons.
The final calculation formular derived in the section 2.3 on the page 24 for the microfield

probability distribution function at an electron (2.49) is

P (β) =
2β
π

∞∫
0

k∗Te(k
∗) sin(βk∗)dk∗

Here Te(k) is the Fourier transform of the electric microfield distribution Q =<
exp(ı~k · ~E) > with ~E being the total electric microfield, β = ε/ε0, k∗ = kε0, ε0 =
e/(4πε0r

2
ei) = en2/3/((36π)1/3ε0), where n = ne + ni.

The EMD studied in the work (Sadykova and Ebeling, 2007) is given by the Debye
screening approximation described by the generalized two-body correlation function
G(~r,~k) (2.71). The Fourier transform of the electric microfield distribution Te(l) is
calculated using Eq. (2.69) with Debye-Hückel effective fields (2.67) and pair correla-
tion function gαR(r) (2.70) where for determination of pair correlation functions the
expressions (3.45) in the Sec. 3.1 for the screened Kelbg pseudopotential obtained in
(Sadykova and Ebeling, 2007) have been used.

As mentioned above, we do not distinguish between free and bound electrons. The
results of calculations for the parameter sets shown in the Table 3.2 are presented in Figs.
3.6 a, b and 3.7. These parameters are beyond the degeneration border (ne ·Λ3

ee < 1)
and can be treated classically.
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3.3 EMDs at a charged and a neutral particles in electron-positron TCPs

Table 3.2: Plasma Parameters of consideration

rs 52.55 13.13 8.76

Γee 0.2 0.8 1.2

ne = ni, 1021 cm−3 0.01 0.7 2.4

T , 104K 3 3 3

It is clearly seen in Fig. 3.6 a that at small nonidealities and densities the curves
almost coincide with those obtained by Molecular Dynamics simulation (MD) presented
in (Ortner et al., 2000) and Ortner’s et al. theoretical results (Ortner et al., 2000)
where for the pair distribution function of the pair (e, a) gea(~r) the corrected Kelbg
pseudopotential in Debye screening approximation was used, as described in the previous
section 3.1. At such low densities and high temperatures the contribution of correlation
and quantum effects is negligible. The pseudopotentials also are similar as to be seen
in Fig. 3.4. However, the curves are still shifted toward the lower field direction with
respect to the Holtsmark distribution.

When density and nonideality increase, correlation effects begin to play an important
role. One can see in Fig. 3.6 b, 3.7 that the curves are shifted with respect to each
other. The curve obtained in the present work is always located between the MD and
the Holtsmark curves and slightly differs from Ortner’s curve. The parameters Γ = 2,
rs ' 5.25 correspond to degenerated area. Therefore this case was not considered here.

3.3.1 Molecular dynamics simulations
The theoretical discussion and Molecular Dynamics simulations in (Ortner et al., 2000),
(Sadykova et al., 2010b,a), (Sadykova and Ebeling, 2007) have shown that the distribu-
tions for the electric microfield in TCP plasma are quite similar in their shapes to the
Holtsmark distribution. Deviations from the Holtsmark result are mainly observed in
the region of high fields leading to “fatter” tail. The second moment of TCP microfield
distribution formed by discrete positive and negative charged components diverges. This
high field domain is exactly the region where the quantum effects incorporated into
the Kelbg pseudopotential at small distances play the role. The distribution obtained
for the electric microfield in two component plasmas leads to a good agreement of
atomic line wing shapes with experiment (Klimontovich, 1983). We note however that
quantum-effects may lead to an effective cut-off in the far tail eliminating the divergence
of the second moment (Ortner et al., 2000). As we see, the analytical theory of EMD in
TCP is still far from being complete.

This makes it interesting to calculate EMD without making additional simplifications
with the help of powerful computers using Molecular Dynamics (MD) or Monte-Carlo
approach. MD allows to follow the system’s time evolution in different plasma param-
eters domains. In what follows we report the results of MD simulations of EMD for
several values of nonideality parameter Γee and fixed temperature T . We consider the
TCP electron-positron plasma which is anti-symmetric with respect to the charges and
symmetric with respect to the masses and densities. This special model allows for more
effective computer simulations and also delivers a simpler case for further theoretical
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3 EMDs in electron OCPs and mass-symmetrical electron-positron TCPs

0 1 2 3 4 5 6 7 8
0,0

0,1

0,2

0,3

0,4

0,5

P
(

)
present 

Ortner
Holtsmark

MD

a)

0 1 2 3 4 5 6 7 8
0,0

0,1

0,2

0,3

0,4

0,5

P
(

)

present 

Ortner
Holtsmark

MD

b)

Figure 3.6: Electric microfield distributions at an electron for TCP electron-positron plasmas
at T = 30000 K and a) Γee = 0.2, b) Γee = 0.8. MD results have been taken from
(Ortner et al., 2000). The Holtsmark distribution is also shown for comparison.
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3.3 EMDs at a charged and a neutral particles in electron-positron TCPs
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Figure 3.7: Electric microfield distribution at an electron for TCP electron-positron plasma
at T = 30000 K, Γee = 1.2 (Sadykova and Ebeling, 2007). MD results have been
taken from (Ortner et al., 2000). The Holtsmark distribution is also shown for
comparison.

studies.
We have performed a series of molecular dynamic simulations. The leap-frog variant of

the so-called Verlet algorithm was used to integrate numerically the equations of motion
in the corrected Kelbg pseudopotential of Eq. (3.28). The algorithm was first utilized by
L. Verlet (1967). The following equations constitute this algorithm:

~x
(n+1)
i = 2~x(n)i − ~x

(n−1)
i + [ ~F

(n)
i /M ](∆t)2, (3.49)

~v
(n)
i = [~x

(n+1)
i − ~x(n−1)

i ]/2(∆t), (3.50)

where ~x(n)i = ~xi(tn) and ~v
(n)
i = ~vi(tn) are the position and the velocity of the i-th

particle correspondingly at time tn with tn = n(∆t), ∆t - time interval, ~F (n)
i = ~Fi(tn) =

(d2~xi/dt2)tn is the total force acting on the i-th particle with a mass M at time tn. In
order to use the Verlet algorithm one needs to know two sets of positions, namely, {~x(0)i }
and {~x(1)i }, from which all subsequent positions can be determined by using the recursion
relations (3.49). To get the positions {~x(0)i } one sets up a lattice with the given particles;
the locations of the lattice sites are used as {~x(0)i }. One also assigns velocities {~v(0)i }
to the particles by drawing these randomly from the Maxwell-Boltzmann distribution.
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3 EMDs in electron OCPs and mass-symmetrical electron-positron TCPs

Then, to get {~x(1)i } one uses the Taylor expansion

~x
(1)
i = ~x

(0)
i + ~v

(0)
i (∆t) + (1/2!)[ ~F (0)

i /M ](∆t)2 + · · ·. (3.51)

Then, using these sets, namely, {~v(0)i } and {~x
(1)
i }, one can use the equations (3.49), (3.50)

for all subsequent calculations of the positions and velocities of the particles.
The simulations were performed using a 200-particle system of electrons and positrons

with the minimum-image (closest-image) convention of periodic boundary conditions
(PBC) in a cubic cell of the volume selected according to the plasma coupling parameter
Γee varied from weak coupling (Γee = 0.2) up to moderate coupling (Γee = 1.2), see
Fig. 3.8. The temperature of the system was chosen as T = 30000K. In computer
simulations, PBC are a set of boundary conditions that are often used to simulate a large
system by modeling a small part that is far from its edge. When using PBC, particles
are enclosed in a box, and this box is replicated to infinity by rigid translation in all the
three cartesian directions, completely filling the space. The replicated copies of the box
are called images, of which there are infinitely many. During the simulation, only the
properties of the box need to be recorded and propagated. The simulation box is defined
in such a way that when a particle passes through one face of the box, it reappears on
the opposite face with the same velocity. The key point is that each particle i in the box
should be thought as interacting not only with other particles j in the box, but also with
their images in nearby boxes. That is, interactions can “go through” box boundaries.
The minimum-image convention is a common form of PBC in which each individual
particle in the simulation interacts with the closest image of the remaining particles
in the system. The pairwise electron-positron, positron-positron and electron-electron
interactions are set to the corresponding unscreened corrected Kelbg pseudopotentials.
The Metropolis algorithm as a type of Monte Carlo technique is used to calculate
thermodynamic averages of a system at finite temperatures. This method samples phase
space via a random walk. Steps in this random walk are only taken if the energy remains
low enough to contribute a significant amount to the average. Random single-particle
displacements with adjustable amplitude are used to keep the Metropolis algorithm
acceptance ratio around 0.5, which is the fraction of proposed samples that is accepted in
a window of the last N samples. The instantaneous microfields are numerically obtained
by calculating direct Coulomb interaction contributions from all particles (electrons and
positrons) at a set of measurement points. The measurement points can be placed either
at random locations: neutral (for microfields at a neutral point) or at plasma positrons
(for microfields at an positron) or at electrons (for microfields at an electron). In order
to save a computer time in some cases we made MD runs not with the Langevin source
but using MC procedures to establish thermal equilibrium in the system, both methods
have led to the same results. The distributions are composed for 106 − 4 · 107 MC steps
after the system equilibration. Long MC simulation runs are required to obtain the
distribution tails for β > 10 (see Figures 3.9). We note that the microfield distributions
can be simulated in a similar way by the semiclassical Monte-Carlo method.
The results of the simulation are shown in the Fig. 3.8 a for an EMD at an electron

and in Fig. 3.8 b for an EMD at a neutral point in TCP (Sadykova et al., 2010b,a). The
high-frequency OCP curves are given for comparison. In all cases the distributions are
considerably different from the Holtsmark one both for the field at an electron and at
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Figure 3.8: Electric microfield distributions obtained with the help of MD for TCP electron-
positron plasmas at T = 30000 K and various Γ. EMD are measured at a) an
electron, b) a neutral point (Sadykova et al., 2010b,a). In both figures the EMDs
are compared to the high-frequency OCP case at Γee = 0.9 obtained in the present
work. The Holtsmark distribution is also shown for comparison.
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3 EMDs in electron OCPs and mass-symmetrical electron-positron TCPs

a neutral point. The curves are stronger peaked and the position of their maximum is
shifted to the lower fields. Moreover, the results of simulations show that with increasing
nonideality parameter the position of a peak for both cases, EMD at an electron and
neutral point, shifts to the lower fields.
The height of the peak of EMD at a neutral point increases monotonically with the

increase of Γee. For the case of EMD at an electron this height diminishes monotonically
only for Γee > 0.3 and dependence on Γee is not significant. The maximum of the curve
lays below the one for Γee = 0.3, which shows that the curves do not scale, i.e. their
overall form is changing with Γee. The similar results for nonsymmetric plasma were
reported in (Kurilenkov and Filinov, 1980). Compared to their results the EMD at an
electron in our case are much stronger peaked (peaks higher than one of the Holtsmark
distribution), while the peaks observed in the work of Kurilenkov et al. for similar value
of Γee are lower than the ones of the Holtsmark distribution.

The qualitative explanation of our findings with respect to the position of the peak of
EMD are the following: it can be explained by that fact that with the increasing of relative
interaction strength between particles the typical field strength at a charge decreases
due to the repulsion of equally charged particles. The explanation of the behaviour of
the field at a neutral point is more involved since it depends on three-body correlations
(Kurilenkov and Filinov, 1980). In the case of EMD at an electron the probability of
finding very strong fields increases due to the attraction of oppositely charged particles,
leading to a fatter tail compared to the one of the Holtsmark distribution and EMD
measured at a neutral point. The quantitative theoretical description of these effects is
still missing and will be the aim of out future work.
In Fig. 3.8 a, b the curves for TCP and electron OCP models at Γee = 0.9 are

compared. The TCP curve referred to an electron is less pronounced than the OCP
one. This can be explained by that fact that in TCP case two components (electron and
positron) are taken into account leading to the attraction between the opposite charges
and stronger fields in average. That is why the probability of lower fields in TCP is
lower than that in OCP. The tails are considered in detail the next section.

3.4 The tails

Let us now turn to the behaviour of tails of EMDs. Table 3.3 illustrates the behaviour of
electric microfield distributions, obtained with the help of MD, in two-component plasma
showing position of the peaks as well as the power law fits to their tails αe, αn (Sadykova
et al., 2010b,a). The value of αe and αn for various values of Γee are listed in the Table.
3.3. The figure 3.9 shows the tails of the corresponding EMDs in Two-component and
One-component plasmas for Γee = 0.9 in a double decimal logarithmic scale. One readily
infers that the behaviour of the EMD for strong fields follows power laws P (β) = Aβ−α

with the parameter α depending on whether the field is measured at a charge (αe) or at
a neutral point (αn) and which plasma parameters are considered. The behaviour of the
field at a neutral point and any Γee and a charge at low values of Γee << 1 is compatible
with α = 2.5 as characterizing the Holtsmark distribution. The field at a charge at
Γee = 0.4 shows a different decay pattern characterized by αe ≈ −1.74, i.e. follows the
distribution with a considerably fatter tail than the Holtsmark one and lacking not only
the second but also the first moment. This fact can be explained by an increase of the
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3.4 The tails

Table 3.3: Nonideality parameter Γee, magnitude of the most probable electric field measured at
an electron and neutral point in TCP and power of the tail asymptote β−α (Sadykova
et al., 2010b,a).

Γee Neutral point Electron

β|Pmax(β) αn β|Pmax(β) αe

0.2 1.094 −2.565 1.094 −2.229

0.3 1.003 −2.538 1.003 −1.939

0.4 0.912 −2.498 0.912 −1.741

0.5 0.912 −2.497 0.912 −1.652

0.6 0.820 −2.461 0.820 −1.624

0.7 0.747 −2.444 0.820 −1.661

0.8 0.729 −2.446 0.820 −1.696

0.9 0.729 −2.407 0.820 −1.739

1 0.729 −2.409 0.729 −1.761

1.1 0.729 −2.402 0.729 −1.802

1.2 0.638 −2.380 0.729 −1.856

probability of high field at an electron as the result of attraction between the opposite
charges. This finding however is only probably pertinent to the intermediate behaviour
and at large fields there might be a cut off. The asymptotic errors are of 0.05% for α
and 0.3% for the A.
With an increase of Γee the values of αn are very close to the Holtsmark’s and are

only slightly decreasing. The values of αe exhibit a nonmonotonic behaviour: they first
decrease and then start increasing with Γee.
We would like to refer a reader also to the work (Sadykova et al., 2009b) where we

have shown that at high fields β >> 1, when Γee increases and becomes moderately high,
the ion shell structure starts to play a big role and leads to the different decay pattern
namely A. Y. Potekhin et al. form (2.84) (Potekhin et al., 2002) defined by

P (β) = Bβ−5/2 exp(−Cβ1/2 − β−3/2).

with the different parameters (C, B) in dependence on which type of alkali plasma is
considered. However, for Hydrogen plasma this law for EMD measured at a proton,
where no ion structure is taken into account, does not work satisfactorily. We have found
another asymptote which better describes the H+ plasma at high fields, we call it the
modified Potekhin form :

P (β) = Bβµ exp(−Cβ1/2 − β−3/2). (3.52)
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3 EMDs in electron OCPs and mass-symmetrical electron-positron TCPs

We came to the conclusion that in this case the ion structure should be thoroughly
taken into account. We took the ion structure into account with the help of so called
Hellmann-Gurskii-Krasko pseudopotential (Krasko and Gurskii, 1969).
In the figure 3.9 one can see that the behaviour of tails in TCP case and OCP case

are different. For electron-positron plasma at higher Γee and β >> 1 the Potekhin form
is not a good approximation for the tail’s asymptote measured at an electron as well.
A better asymptote is provided by the modified Potekhin form (3.52) with B = 0.55,
C = 0.12, µ = −1.505 for TCP plasma and B = 2.3, C = −0.56, µ = −4.28 for OCP
plasma (asymptot. error ≈ 0.5%). In TCP case the EMD tail at an electron is fatter
about αe ≈ 1.74 (in a power law approx.) and longer than that of OCP αe ≈ 3.28 (in
a power law approx.). This fact can be explained by an increase of the probability of
high field for TCP models as the result of attraction between the opposite charges and
decreasing in the case of OCP model due to repulsion of particles with the same charges.
The distribution at high fields is influenced by quantum effects which are modelled by
the Kelbg pseudopotential. The tails measured at a neutral point exhibit similar to the
Holtsmark distribution behaviour αn ≈ 2.5. One should take into account that in Fig.
3.9 the EMD curves in OCP and TCP are measured in E0 = e/(4πε0rei

2) units leading,
as it was explained above in Sec. 2.1, to shifting of the tails of EMD curves with respect
to each other and OCP case refered to the Holtsmark distribution.
Fig. 3.9 also shows the comparison to the results for asymptotic field distributions

proposed by other models than the Holtsmark’s one (2.20) on the page 13 of the Sec.
2.1: like Lewis-Margenau model for low-frequency OCP at an ion (z = 1) proposing
(Lewis and Margenau, 1958) when β >> 1, Γee

√
(β) >> 1 (2.81)

P (β) = Cβ−5/2 exp(−Γii
√
β)

[
1 + C

12
Γii
β

+ · · ·
]

,

where C =
√

2
π

15
8 and Baranger-Mozer (Baranger and Mozer, 1959) model for high-

frequency OCP at a neutral point (2.82) with

P (β) = PH(β)|β→∞− (ree/rDe)β−7/2(0.5453(ree/rDe)+ 11.78β−1 + 114.6β−5/2 + · · ·),

where PH(β)|β→∞ represents the Holtsmark asymptote.
The comparison shows that both Holtsmark and Baranger-Mozer distributions reason-

ably describe the decay in the tail of EMD at a neutral point while the Margenau-Lewis
distribution fails, at least for the value of Γee used. The Lewis-Margenau, Holtsmark and
Baranger-Mozer distributions when z = 1 remain the same in TCP case, whereas when
z 6= 1 the curves modify. None of these distributions describes adequately the EMD at
an electron.

3.5 Conclusions

The electric microfield distributions have been calculated at an electron and at a neutral
point using a coupling-parameter integration technique for one-component plasmas
proposed by C. A. Iglesias and the generalized coupling-parameter integration tech-
nique for two-component plasmas proposed by J. Ortner et al. . Electric microfield
distributions are studied in the framework of the Kelbg pseudopotential model, taking
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Figure 3.9: The tails of electric microfield distributions at electron in a electron-positron
plasma, neutral point at Γee = 0.9, T = 30000 K, ne = 1027 m−3 in comparison
with Margenau-Lewis (2.81), Baranger-Mozer (2.82), Holtsmark (2.25) and modified
Potekhin approximations (3.52) (Sadykova et al., 2010b,a).

into account quantum-mechanical effects (diffraction, quantum symmetry effects) and
screening effects. The screening effects were introduced on a base of Bogoljubov’s works
(BBGKY) described by H. Falkenhagen. The screened pseudopotential is represented in
a numerically approximated form. The results were found in a good approximation with
Molecular Dynamics simulation results.
We performed the MD simulations of nonideal TCP and high-frequency OCP sym-

metrical plasma and concentrated on electric microfield distributions measured at an
electron and at a neutral point as depending on the coupling parameter Γee in the range
0.2 ≤ Γee ≤ 1.2 at T = 30000K (Sadykova et al., 2010b,a). We show that with the
increase of Γee the most probable field shifts to the lower values. The height of the peak
of the corresponding probability density in a case of EMD at an electron decreases with
Γee for Γee > 0.3. The height of the peak of the corresponding probability density in
a case of EMD at a neutral point increases monotonically with Γee. The tails of EMD
measured either at a neutral point or electron and low Γee were found to obey to the
power-laws. The tails of the EMD distribution at a neutral point and an electron at
low Γee follow a pattern compatible with the Holtsmark one while at higher values of
Γee and higher fileds β >> 1 the tails of EMD at an electron are considerably fatter
and follow the modified Potekhin form (P (β) = Bβµ exp(−Cβ1/2 − β−3/2) ). The TCP
curves referred to either an electron or neutral point are less pronounced than the OCP
one and their tails are fatter. This can be explained by that fact that in TCP case two
components (electron and positron) are taken into account leading to the attraction
between the opposite charges and stronger fields in average. These results can serve as a
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benchmark for our further theoretical work.
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4 Electric microfield distributions in
electron-ion two-component plasmas
with an account of the ion shell structure

As we have mentioned above, in order to correctly describe alkali plasmas which is of our
interest at moderate temperatures one needs to take into account the ion shell structure.
For example, for the behaviour of alkali plasmas the short range forces between the
charged particles are of great importance. For alkali plasmas at small distances between
the particles deviations from Coulomb law are observed which are mainly due to the
influence of the shell electrons. Thus, the ion shell structure should be taken into account.

4.1 Taking into account the ion shell structure and plasma
screening effects

4.1.1 Pseudopotential models taking into account the ion shell structure.
Hellmann-Gurskii-Krasko pseudopotential

For the calculations of the microfields acting on a charged particle we need as an essential
input quantity the pair distribution functions of the plasma particles (Ecker, 1972).
Indeed it is evident from the point of view of the physics that the distribution of the
electrical fields acting on a particle is determined by the distribution of the charged
particles surrounding it. On the other hand the distribution is determined by the effective
interactions between the charges. In particular, the Kelbg (Kelbg, 1964a; Ebeling et al.,
1999) and the Deutsch (Deutsch, 1977; Minoo et al., 1981) potentials, obtained by
perturbational theory, are frequently used. Clearly, the Coulomb law as well as the
Kelbg or Deutsch potentials are not applicable to the forces between the charges in alkali
plasmas since there are strong deviations at small distances due to the influence of core
electrons.

The pseudopotential is an attempt to replace the complicated effects of the motion of the
core (i.e. non-valence) electrons of an atom and its nucleus with an effective potential, or
pseudopotential, so that the Schrödinger equation contains a modified effective potential
term instead of the Coulomb potential term for core electrons normally found in the
Schrödinger equation. The pseudopotential approximation was first introduced by Hans
Hellmann in the 1930s. By construction of this pseudopotential, the valence wavefunction
generated is also guaranteed to be orthogonal to all the core states. In a short, the
pseudopotential is an effective potential constructed to replace the atomic all-electron
potential such that core states are eliminated and the valence electrons are described by
nodeless pseudo-wavefunctions.

The Method of model pseudopotentials describing the ion shell structure in metals was
developed by Heine, Abarenkov and Animalu (Heine and Abarenkov, 1964), (Harrison,
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1966), (Heine, 1970), (Heine et al., 1973). This method suggests that a pseudopotential
Û is defined as following:

Û =
∑
j

w(~r− ~Rj), (4.1)

where w(~r) is a pseudopotential related to an ion. Then the problem of determination
of Û potential is reduced to the determination of electron pseudopotential in a field of
the free ion.
Heine, Abarenkov (Heine and Abarenkov, 1964) proposed the following method of

determination of the ionic model pseudopotential. One considers two types of interactions:
outside of the shell of radius r0, where the interaction potential is equal to −ze2/r with
z being the ionic charge and inside, where it is the constant Al(E) (independent of r)
which varies slowly with energy E of the incident conduction electron as well as with the
chosen r0. This constant is chosen in such a way, that the corresponding solution inside
the sphere jl(kr) (here k = (2m(E +Al(E))/ h̄2)1/2) would have on the shell surface
the same logarithmic derivative as outside at a fixed eigenvalue of energy. Then, outside
the shell the wave function defined through the model potential will have the same view
as the wavefunction of the true potential and, thus, the same eigenvalue. For the more
detailed review we refer a reader to (Heine et al., 1973), (Kovalenko et al., 2001). The
model Heine-Abarenkov potential has the following form:

UHAei =

{
−
∑
lAl(E)P̂l, r < r0

−ze2/r, r > r0
, (4.2)

where Pl is a projection operator which picks out the lth spherical harmonic component
of the incident wave function and Al, r0 are the fitting parameters. Thus UHAei is not
simply a function of r but an l− and E− dependent operator.
It is worth to mention the more simple model pseudopotential of Cohen-Abarenkov-

Heine:
UCAHei =

{
ze2u/r0, r < r0
−ze2/r, r > r0

, (4.3)

the adjustment parameters u and r0 are usually determined through comparative analysis
of theoretical and experimental data of statistical properties of metals. This pseudopo-
tential reduces to the Ashkroft pseudopotential (Ashcroft, 1968) when u = 0 which is
used for study of kinetic properties of metals. If one assumes that u = 1 then it turns
into the Shaw pseudopotential which is used for study of thermodynamical properties of
metals.
However, all pseudopotentials listed above have one drawback. They are usually

described in ~r space by a discontinous function. As a result, their Fourier-transforms
(formfactors) at q →∞ do not provide the sufficient convergence of series and integrals
of the perturbation theory. Consequently, Abarenkov and Heine modified the Cohen-
Abarenkov-Heine pseudopotential with the help of the arbitrary exponential damping
factor for q →∞ (Vaks et al., 1977).
Another model is the Hard-Core Model (HC) describing the ion-ion interaction:

UHCii =

{
∞, r < r0
z2e2/r, r > r0

, (4.4)

60



4.1 Taking into account the ion shell structure and plasma screening effects

The disadvantage of the Hard-Core Model as well as the Cohen-Abarenkov-Heine pseu-
dopotential model is that at the radius r0 the derivative (i.e forces) becomes infinite and
their Fourier-transforms (formfactors) at k →∞ do not provide the sufficient convergence
of series and integrals of the perturbation theory.
In many problems of atomic and molecular physics one can divide the electrons of

the system into valence and core electrons. Often the important physical properties are
determined by the valence electrons. In a series of pioneering papers Hellmann attempted
to develop a computational model in which the treatment of such atoms and molecules is
reduced to the treatment of valence electrons (Hellmann, 1935b,a, 1936), (Hellmann and
Kassatotschkin, 1936). Hellmann demonstrated that the Pauli exclusion principle for
the valence electrons can be replaced by a nonclassical potential (Abstossungspotential)
which is now called the pseudopotential. Hellmann’s idea was to replace the requirement
of orthogonality of valence orbital to the core orbitals by the pseudopotential what made
the respective mathematical calculations much simpler.
For the actual purpose of atomic and molecular calculations Hellmann suggested a

simple analytic formula. Let ϕ be the sum of electrostatic, exchange, and polarisation
potentials, representing the interaction between a valence electron and the core of an
atom. Let ϕp be the Abstossungspotential. The potential ϕH = ϕ+ϕp may be expressed:

ϕHei(r) = −
ze2

4πε0r
+

ze2

4πε0

Ae−αr

r
, (4.5)

Here z is the ionic charge of the core; that is, if the nucleus contains Z positive charges and
the core contains N electrons then z = Z −N . The constants A and α are determined
from the requirement that the potential ϕH should reproduce the energy spectrum of
the valence electron as accurately as possible.
The physical meaning of Eq. (4.5) can be understood from Figures 4.1. In Figure

4.1a we have plotted ϕH for the valence electron of the Na atom (A = 10.09,α = 2.004
in a.u.) and in the Figure 4.1b for the Cs atom (A = 1.584,α = 0.562 in a.u.). As
we see in the Figure 4.1a for Na, in contrast to the Coulomb potential, which is an
everywhere negative, attractive potential, the potential ϕH has a positive potential
barrier at about R ≈ 0.12 a deep negative well between R ≈ 0.1 and R ≈ 0.3, and
is Coulombic for large R. Later on several modifications were introduced by Schwarz,
Bardsley etc. into the determination of the Hellmann potential parameters without
changing the basic analytic form of the potential (Szasz, 1985). For instance, Schwarz
improved the determination of the potential parameters for neutral atoms Be, Mg, Ca,
Sr, Zn of the second and negative ions Li, Na, K, Rb and Cu of the first family of
the periodic system considerably obtaining the better fit to the empirical energy levels
(Schwarz, 1968a), (Schwarz, 1968b), (Schwarz, 1969).

However, all the mentioned above pseudopotentials have one drawback. They are
usually described in ~r space by a discontinous function or have a relatively hard core as
in a case of Hellmann potential. As a result, their Fourier-transforms (formfactors) at
k →∞ do not provide the sufficient convergence of series and integrals of the perturbation
theory. Alternatively, Gurskii and Krasko constructed a pseudopotential model excluding
the mentioned shortcoming by introducing a continuous in ~r space pseudopotential. On a
base of smoothness of the obtained electron density distribution in an atom, Gurskii and
Krasko proposed the following electron-ion model pseudopotential (Krasko and Gurskii,
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4 EMDs in electron-ion TCPs with an account of the ion shell structure

1969), (Kovalenko et al., 2001):

ϕHGKei(r) = −
ze2

4πε0

1− e−r/RC

r
+

ze2

4πε0

a

RC
e−r/RC , (4.6)

where z− valency, RC = rCrB and a are determined experimentally using the ionisation
potential and the formfactor of the screened pseudopotential at the first sites of the
reciprocal lattice. The parameter rC is defined as a certain radius characterizing the
size of the region of internal electron shells. If such measurements are not available, the
second condition is replaced by the constraint that P = 0 at T = 0 in the equilibrium
lattice. The magnitudes are given in SI system of units. In this work values of a, rC are
taken from (Gurskii and Krasko, 1971). We note that the first term is identical with the
potential of Hellmann (Hellmann, 1935b,a, 1936), (Hellmann and Kassatotschkin, 1936).
Due to this fact we call this pseudopotential as Hellmann-Gurskii-Krasko potential. The
results of calculation of bound energy and phonon spectra with the help of Hellmann-
Gurskii-Krasko (HGK) potential were found in a good agreement with the experimental
data and can be used in a wide range of invetsigation of thermodynamic properties of
alkali plasmas. We underline however that the HGK potential includes just some rough
global effects of ion shell structure by means of a repulsive potential contribution. In
the Fig. 4.1a and 4.1b the comparison between the electron-ion Hellmann, HGK and
Coulomb potentials for Na+ and Cs+plasmas are shown. One can easily see that HGK
has a more soft core compared to the Hellmann potential. In the Fig. 4.2a one can
see the comparison between the different pseudopotential ϕHGKei(r) of different alkali
plasmas, where the electron-ion Hellmann-Gurskii-Krasko potential possess a minimum.
Unfortunately there are no available HGK parameters for the Be2+ ion. That is why

for Be2+ we use the alternative Fiolhais et al. pseudopotential, for which the parameters
are known in this case:

ϕF ei(r) =−
ze2

4πε0r

[
1−

(
1 + β

r

RC

)
exp

(
−α r

RC

)]
+

ze2

4πε0

A

RC
exp

(
− r

RC

)
. (4.7)

Here RC is the core decay length, α > 0, β = (α3 − 2α)/4(α2 − 1) and A = α2/2−
αβ. In (Fiolhais et al., 1995) two possible choices of parameters are suggested: the
“universal” and the “individual”. We made a fit of the parameters of HGK potential to
the “universal”one of Fiolhais et al. pseudopotential, which are a = 3.72, rC = 0.22. In
(Fiolhais et al., 1995) the universal parameters were chosen to obtain the best agreement
between calculated and measured structure factors of alkali metals. In Fig. 4.3 the
electron-ion Fiolhais et al., HGK and Coulomb potentials for Be2+ plasmas are compared.
One can easily see that the HGK potential almost coincides with the Fiolhais et al. one.
The Hellmann type pseudopotentials were proposed to be used for alkali plasma in

works (Ebeling et al., 1976; Zimdahl and Ebeling, 1977), (Ebeling et al., 1977, 1979) .
Pseudopotentials for the ion-ion interaction are not well known. That is why we decided
to use here the Hellmann-Gurskii-Krasko model with an adapted length parameter RCii.

The Hellmann-Gurskii-Krasko model for an ion-ion interaction shown in Fig. 4.2b
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Figure 4.1: Comparisons among the e− i HGK, Hellmann and Coulomb potentials at T = 30000
K for (a) Na+ and (b) Cs+ plasmas. The insets show the softness of the HGK
potential compared to the Hellmann potential. As the length scale we use the
Landau length rL = e2/(4πε0kBT ), rL ' 10.5rB and kBT ' 0.1 Ha.
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for alkali plasmas is the following:

ϕHGKii(r) =
z2e2

4πε0

1− e−r/RCii

r
+
z2e2

4πε0

aii
RCii

e−r/RCii , (4.8)

Since values of rCii, a are not given in literature. rCii is taken hypothetically as the
doubled value of that taken for e− i interaction rCii = 2rC taking in this way both
ions cores (closed shells) into account and aii = a. In Fig. 4.2b we display the HGK
pseudopotentials ϕHGKii(r) for different alkali plasmas. We will study this in more
detail and compare with the hard-core potential described in (Ebeling et al., 1976;
Zimdahl and Ebeling, 1977), (Ebeling et al., 1977, 1979). In Table 4.1 the parameters
of the Hellmann-Gurskii-Krasko potential for alkali elements and the elements of the
second periodic family are presented. We note that ϕHGKei(r) potential describes the
interaction of a valence electron with the corresponding ion core of a charge z and radius
RCei, while ϕHGKii(r) describes the interaction between two ion cores of a charge z
with the same radius RCei.
In (Ebeling et al., 1979) it was proposed to describe the electron-ion interaction by the
Hellmann-potential and the ion-ion interaction by the model of charged hard cores with
the crystallographic radii Ri. The electrical part of the ion-ion interaction is described
by a pseudopotential:

ϕHCii(r) =

{
z2e2

4πε0r
, r > 2Ri

∞, r < 2Ri
(4.9)

In principle the choice of the parameters for the ion-ion interaction should be based on
methods similar to those in (Gurskii and Krasko, 1971). Alternatively, we propose to
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4.1 Taking into account the ion shell structure and plasma screening effects

Table 4.1: The parameters of the Hellmann-Gurskii-Krasko potential in atomic units (Gurskii
and Krasko, 1971). In the case z = 2 the parameters correspond to the interaction of
an ion with the charge 2e with an electron. rcei and rcii are measured in rB units.

Li Na K Rb Cs Be Mg Ca Sr Br

z 1 1 1 1 1 2 2 2 2 2

a 5.954 3.362 2.671 2.293 2.214 3.72 2.588 2.745 2.575 2.870

rcei 0.365 0.487 0.689 0.779 0.871 0.22 0.427 0.571 0.644 0.698

rcii 0.73 0.974 1.948 1.558 1.742 0.44 0.854 1.142 1.288 1.396
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Figure 4.4: The i− i HGK, hard core, soft core and Coulomb potentials for (a) Na+ and (b)
Cs+ plasmas (in atomic units).

use the following soft core potential:

ϕSCii(r) =
z2e2

4πε0

1− e−r/Ri

r
+
z2e2

4πε0

a

RCii
e−r/RCii , (4.10)

As another simple approximation we propose to use the crystallographic ion radii Ri
(Ebert, 1967) in the first constituent of the potential. The procedure of introducing
crystallographic radii into the (first) Hellmann term was already quite successfully applied
in the theory of ionic solutions (Falkenhagen, 1971). Furthermore, on a base of our
calculations we came to the conclusion that the results are not sensitive with respect
to the a parameter of the ion-ion interaction. That is why a is taken the same as for
electron-ion interaction. In Figures 4.4a, b the comparison among the HGK, Hard-Core
(HC) (Ebeling et al., 1979) and soft core (SC) eq. (4.10) models is presented.

The pseudopotentials which are used in our calculations were originally developed
for applications in the electronic band structure and binding energies in alkali metals.
However the derivation used by Hellmann and his followers is basically working with
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4 EMDs in electron-ion TCPs with an account of the ion shell structure

wave functions of a few electrons and not the ionic all-electron wave functions like in the
solid state. For this reason we can not see strong arguments against applications to the
two-particle interactions in the plasma state. Definitely, this is a working assumption
which needs further justification. Nevertheless we are convinced that application of
pseudopotentials of Hellmann-type is much nearer to reality than the use of pure Coulomb
potentials or hard-core potentials. Further we would like to argue that the experimental
investigations of alkali metals near to the critical point did not show the existence of
deep differences between the two particle interactions in the liquid and the gaseous
state (Hensel, 1977; Hensel et al., 1985). What is clearly different are the multi-particle
interactions, however multi-particle effects are less relevant at the low densities and
relatively high temperatures we consider here.

4.1.2 The screened Hellmann-Gurskii-Krasko pseudopotential obtained
with the help of electron-electron Deutsch and electron-ion, ion-ion
Hellmann-Gurskii-Krasko micro-pseudopotentials

There are two main well-known difficulties in determination of thermodynamic and
transport properties of dense high-temperature plasmas. The first one is induced by the
long-range character of bare Coulomb interaction of charged particles. Conventionally,
this difficulty is avoided by taking into account collective effects connected with the great
number of interacting particles, i.e. screening effects. On the other hand, when plasma
density increases the ratio between the Landau length and the thermal de Broglie wave
length decreases and the quantum-mechanical effects begin to play an important role.
In this regard, it is of high interest to construct a pseudopotential model of particle
interaction in the dense high-temperature plasma, taking into account both the quantum-
mechanical effects at short distances and the field screening effects at large distances.

To determine the thermodynamic and transport properties of semiclassical fully ionized
plasma effective potentials simulating quantum effects of diffraction and symmetry are
widely used (Kelbg, 1964a,b; Deutsch, 1977; Minoo et al., 1981) and later significantly
improved (Ebeling et al., 1999; Wagenknecht et al., 2001; Filinov et al., 2003). In
particular, Deutsch and co-workers (Deutsch, 1977), (Minoo et al., 1981) have obtained
the following form of effective e− e interaction potential of charged particles in plasma
medium:

ϕee =
e2

4πε0r

[
1− exp

(
− r

λee

)]
+ kBT ln 2 exp

(
− r2

πλ2
ee ln 2

)
, (4.11)

where e is the elementary electronic charge of interacting particles, λee = h̄/
√
πmekBT

is the thermal de-Broglie wavelength. The pseudopotential (4.11) does not take into
account collective events in plasmas and can be applied only for highly ionized plasmas.
Since most experimental data available refer to partially ionized plasmas at moderate
temperatures when the ions partially retain their inner shell, it is of a high interest to
construct the pseudopotential model which takes into account not only the quantum-
mechanical and screening field effects but also the ion shell structure. We will use here the
Deutsch pseudopotential (4.11) for the electron-electron interaction and the Hellmann-
Gurskii-Krasko (HGK) pseudopotential for the electron-ion and ion-ion interactions.
First the pseudopotentials have to be screened. In this work we applied the method
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4.1 Taking into account the ion shell structure and plasma screening effects

developed in (Falkenhagen, 1971) and (Arkhipov et al., 2000). In (Arkhipov et al., 2000)
the authors developed the classical approach based on the BBGKY chain of Bogoljubov
equations (Bogoljubov, 1946, 1962) for the equilibrium radial distribution functions where
the a− b = e, i Deutsch pseudopotentials (Deutsch, 1977), (Minoo et al., 1981) were taken
as micro-pseudopotentials. In our paper we use the HGK pseudopotentials ϕHGKei(r)
(4.6), ϕHGKii(r) (4.8) and Deutsch pseudopotential (4.11) as micro-pseudopotentials.
Following (Ecker, 1957; Ecker and Müller, 1958), the authors (Arkhipov et al., 2000)
deduced the following system of integral-differential equations for the pseudopotential
Φab in a framework of the pair correlation approximation:

∆iΦab(~r
a
i ,~rbj) = ∆iϕab(~rai ,~rbj)−

∑
c=e,i

nc
kBT

∫
d~rcm∆iϕac(~rai ,~rcj)Φcb(~r

c
m,~rbj). (4.12)

Here ∆i denotes the Laplace operator acting on the coordinates of the ith particle. ϕei(r),
ϕii(r) in the sect. 4.1.1 (we skip here and further the “HGK”superscript) represent the
HGK pseudopotentials which can be rewritten in SI system as following:

ϕab(r) =
eaeb
4πε0

(
1− e−r/Rcab

r

)
+
|eaeb|
4πε0

a

Rcab
e−r/Rcab , (4.13)

where RCab = rcabrB. Parameters rcei can be taken from the tabl. 4.1 in the sect. 4.1.1,
whereas rcii = 2rcei. For the e− e interaction the Deutsch pseudopotential (4.11) has
been used.

In Fourier space this system (4.12) of integral-differential equations (4.12) turns into a
system of linear algebraic equations:

Φab(k) = ϕab(k)−
1

kBT
[neϕae(k)Φeb(k) + niϕai(k)Φib(k)] (4.14)

where a, b = i, e. Solving the system (4.14) for two-component plasma one can derive the
following expressions for the Fourier transform Φab(k) of the pseudopotential Φab(r):

Φei(k) =
ze2

ε0∆
(2a− 1)Rcei2k2 − 1
k2(1 + k2Rcei

2)2 , (4.15)

Φee(k) =
e2

ε0∆

{
1

k2(1 + k2λee
2)

+
1

k4rDi2

 (2a+ 1)Rcii2k2 + 1
(1 + k2λee

2)(1 + k2Rcii
2)2 −

(
(2a− 1)Rcei2k2 − 1

(1 + k2Rcei
2)2

)2


+ A

(
1 + (2a+ 1)Rcii2k2 + 1

k2rDi2(1 + k2Rcii
2)2

)
exp

(
−k

2

4b

)}
, (4.16)
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Φii(k) =
z2e2

ε0∆

{
(2a+ 1)Rcii2k2 + 1
k2(1 + k2Rcii

2)2

+
1

k4rDe2

 (2a+ 1)Rcii2k2 + 1
(1 + k2λee

2)(1 + k2Rcii
2)2 −

(
(2a− 1)Rcei2k2 − 1

(1 + k2Rcei
2)2

)2


+ A
(2a+ 1)Rcii2k2 + 1
k2rDe2(1 + k2Rcii

2)2 exp
(
−k

2

4b

)}
. (4.17)

Here rDe, rDi are the Debye radius of electrons and ions respectively, with 1/rDi2 =
z2e2ni/(ε0kBT ), 1/rDe2 = e2ne/(ε0kBT ), b = (λee

2π ln 2)−1, A = kBT ln 2π3/2b−3/2·
·ε0/e2 and

∆ =1 + 1
k2rDe2(1 + k2λee

2)
+

(2a+ 1)Rcii2k2 + 1
k2rDi2(1 + k2Rcii

2)2

+
1

k4rDe2rDi2

 (2a+ 1)Rcii2k2 + 1
(1 + k2λee

2)(1 + k2Rcii
2)2 −

(
(2a− 1)Rcei2k2 − 1

(1 + k2Rcei
2)2

)2


+
A

rDe2

(
1 + (2a+ 1)Rcii2k2 + 1

k2rDi2(1 + k2Rcii
2)2

)
exp

(
−k

2

4b

)
. (4.18)

The pseudopotential Φab(r) can be restored from (4.15-4.18) by Fourier transformation

Φab(r) =
1

2π2r

∫
Φab(k)k sin(kr)dk (4.19)

Let us consider the limiting cases of the expressions (4.15-4.16).

A. If rDe, rDi →∞, then
Φab(r) = ϕab(r) (4.20)

When the screening effects are negligible, the pseudopotential Φab(r) coincides
with the potentials (4.11), (4.13).

B. If λee, Rcei, Rcii → 0, then

Φab(r) =
eaeb
4πε0

e−r/rD

r
, (4.21)

where
1
rD2 =

∑
c=e,i

ec
2nc

ε0kBT
. (4.22)

Eq. (4.21) means when quantum-mechanical effects are negligible, then the pseu-
dopotential Φab(r) coincides with the Debye-Hückel one.
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C. If rDe, rDi →∞, λee, Rcei, Rcii → 0, then

Φab(r) =
eaeb

4πε0r
. (4.23)

When the quantum-mechanical and screening field effects are negligible, then the
pseudopotential Φab(r) coincides with the Coulomb potential.

D. If λee,Rcei,Rcii � rDe, rDi, then for e− i and i− i

Φib(r) =
eaeb

4πε0r

[
e−r/rD − e−r/Rcab

]
+
|eaeb|
4πε0

a

Rcab
e−r/Rcab , (4.24)

where b = e, i, whereas for e− e interaction we have:

Φee(r) =
e2

4πε0r

[
e−r/rD − e−r/λee

]
+ kBT ln 2e−r2/λ2

eeln2. (4.25)

These expressions differ from the pseudopotentials (4.11), (4.13) in the presence of the
term exp(−r/rD) term in the brackets instead of 1. This case corresponds to the weakly
coupled plasmas when Γ� 1. The derived expressions (4.15-4.18) differ from the bare
pseudopotentials (4.11), (4.13) due to the screening terms. The present approximation is
restricted to the constraint Γii . 1, Γii = z2e2/(4πε0kBTrii) with rii being the average
ionic interparticle distance, i.e. for weakly and moderately coupled plasmas, due to the
use of linearization process at the derivation of integral-differential equation (4.12).
The comparative plots among the HGK (4.11), (4.13) and screened HGK (4.15-4.19)

pseudopotentials for e− i, i− i, e− e together with their Radial distribution functions
gab = exp(−Φab(r)/kBT ) are given in Figures 4.5-4.9. In Table. 4.2 the parameter
regions for the calculated pseudopotentials are presented, where rL = e2/(4πε0kBT ),
rs = ree/rB (ree being the average electronic interparticle distance, rB = 0.53 · 10−10m -
Bohr radius), z = 1. These parameters are beyond the degeneration border (ne · λ3

ee < 1)
and can be treated classically (rL/λee > 1,λee is the electron de Broglie wave length). In
the Figure 4.5, one can easily see that at low Γii the difference between the e− e screened
HGK pseudopotential (4.19) and Deutsch pseudopotential (4.11) is not significant,
whereas when Γii increases the difference becomes considerable. It is worth, to note
that the Debye-Hückel screening approximation of the pseudopotential (4.25) describes
quite well behaviour of the screened HGK pseudopotential at low Γii. At the moderate
magnitude of Γii one can observe small discrepancy from the screened pseudopotential at
the small distances R = r/rL. In the Figure 4.6, in the case of e− i interaction, at the
small R when r < rB the curves almost coincide and at r > rB when R increases they
begin to diverge. This can be explained by that fact that the screening effects at Bohr
radius are absent and when R and Γii increase they begin to play significant role. In the
case of i− i pseudopotential shown in Figure 4.7 one can see the similar behaviour as
for e− i interaction: at low Γii the difference between the pseudopotentials is negligible,
whereas when Γii increases the screening effects begin to play significant role and the
difference grows with R. The pseudopotentials (4.24) as for e− i, i− i interactions
describe quite well behaviour of the screened HGK pseudopotential even when Γii is
moderate. However, when one considers either extreme high temperatures T & 106K
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Table 4.2: Plasma Parameters of consideration

rs 52.55 13.13 8.76 5.25

Γii 0.2 0.8 1.2 2

ne = ni, 1021 cm−3 0.01 0.7 2.4 10

T , 104K 3 (kBT ' 0.1Ha) 3 3 3

rL, 10−9m 0.55 (' 10.5rB) 0.55 0.55 0.55

and densities ree ≈ rB or high Γii then the discrepancy between the pseudopotentials
increases significantly. One can observe also local minima and maxima as it is shown
in Figure 4.8 a, b for electron-ion pseudopotential. These oscillations one can see more
clearly in the enlarged scale. This effect can be explained by competition between the
quantum-mechanical and screening field effects when their scales become similar leading
to the short-range order formation. The similar results have been reported in (Arkhipov
et al., 2000) for rs = 0.1 · rB and T = 106K. Strictly speaking, such extreme conditions
as shown in the Figure 4.8 a can not be realized for Li+ plasma that is why this example
serves only as a demonstration of behaviour of the pseudopotential whereas in the case
of 4.8 b - parameter region lies close to that of the laser produced plasma.
In the figures 4.9 a, the e− e, i− i radial distribution functions are plotted, as one

can see, the i− i radial distribution function is zero at a distance approximately equal
to the size of electron shell meaning that electron can not approach the nucleus at the
smaller distance while another electron can. The e− i radial distribution function in the
Figure 4.9 b possesses a maximum showing the greatest probability of location of the
electron at the distance approximately equal to the size of electron shell.

In order to compare with the alternative screened i− i pseudopotential models
we considered the Dalgic et al. pseudopotential, which determines the screened ion-ion
pseudopotential (Dalgic et al., 2002) on the basis of the second order pseudopotential
perturbation theory using the Fiolhais et al. pseudopotential ϕF ei(r):

ΦD
ii (k) =

4πz2e2

4πε0k2 + χ(k)|ϕF ei(k)|2, (4.26)

where ϕF ei(k) is the pseudopotential local form factor. Here, we use instead of the
Fiolhais pseudopotential the HGK ΦHGK

ii (k) pseudopotential with the parameters fitted
to those of Fiolhais et al. pseudopotential. Notice that χ(k) is the electron gas response
function, where the Lindhard response of the ideal degenerate electron gas χ0(k) and
the local field correction (LFC) G(k) enter the expression in the standard way. We used
the LFC which satisfies the compressibility sum rule at finite temperatures obtained by
Gregori et al. for the strong coupling regime (Gregori et al., 2007). Similar calculations
have also been carried out by Apfelbaum who used the pseudopotential described by
Dalgic et al. to calculate the SSF of Cs and Rb in the realm of the liquid-plasma
transition (Apfelbaum, 2010) in agreement with the measured SSF.
In Fig. 4.10 the e− i and i− i HGK, screened HGK and i− i Dalgic et al. pseu-

dopotentials are presented for comparison. We presume that the curves shift, with the
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Figure 4.5: Comparison between the different e− e pseudopotentials of semiclassical Li+ plasma
against the dimensionless distance R = r/rL at T = 30000 K, (a) Γii = 0.2 and (b)
Γii = 0.8; 1: Electron-electron Deutsch pseudopotential (4.11); 2: Screened electron-
electron Hellmann-Gurskii-Krasko pseudopotential (4.16), (4.19); 3: pseudopotential
(4.25) (Sadykova et al., 2009a).

0,0 0,2 0,4 0,6 0,8 1,0
-5

-4

-3

-2

-1

0

1

2

ei k

r/(e2/4 kBT)

1
2
3

a)

0,0 0,2 0,4 0,6 0,8 1,0
-5

-4

-3

-2

-1

0

1

2

ei k

r/(e2/4 kBT)

1
2
3

b)

Figure 4.6: Comparison between the different e− i pseudopotentials of semiclassical Li+ plasma
against the dimensionless distance R = r/rL at T = 30000 K, (a) Γii = 0.2 and
(b) Γii = 0.8; 1: Electron-ion Hellmann-Gurskii-Krasko pseudopotential (4.13); 2:
Screened electron-ion Hellmann-Gurskii-Krasko pseudopotential (4.15), (4.19); 3:
pseudopotential (4.24) (Sadykova et al., 2009a).

71



4 EMDs in electron-ion TCPs with an account of the ion shell structure

0,0 0,5 1,0
0

2

4

6

8

10

ii k

r/(e2/4 kBT)

1
2
3

a)

0,0 0,5 1,0
0

2

4

6

8

10

ii  k

r/(e2/4 kBT)

1
2
3

b)

Figure 4.7: Comparison among the different i− i pseudopotentials of semiclassical Li+ plasma
against the dimensionless distance R = r/rL at T = 30000 K, (a) Γii = 0.2 and (b)
Γii = 0.8; 1: Ion-ion Hellmann-Gurskii-Krasko pseudopotential (4.13); 2: Screened
ion-ion Hellmann-Gurskii-Krasko pseudopotential (4.17), (4.19); 3: pseudopotential
(4.24) (Sadykova et al., 2009a).
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Figure 4.8: Electron-ion screened Hellmann-Gurskii-Krasko pseudopotentials of semiclassical
Li+ plasma against the dimensionless distance R = r/rL at (a) Γii = 0.3, T =
1049715 K, ne = 1.6 · 1024 cm−3 and (b) Γii = 2, T = 40000 K, ne = 0.26 · 1023

cm−3; Solid line: Hellmann-Gurskii-Krasko pseudopotential (4.13); Black dashed
line: Screened Hellmann-Gurskii-Krasko pseudopotential (4.19); Red dashed line:
pseudopotential (4.24) (Sadykova et al., 2009a).
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Figure 4.9: Electron-electron, ion-ion (a) and electron-ion (b) Radial distribution functions of
the screened Hellmann-Gurskii-Krasko pseudopotential of semiclassical Li+ plasma
against the dimensionless distance R = r/rL at T = 30000 K, Γii = 0.8 ; Solid line:
Hellmann-Gurski-Krasko pseudopotential (4.13) and (4.11); Dashed line: Screened
Hellmann-Gurski-Krasko pseudopotentials (4.15)-(4.17), (4.19) (Sadykova et al.,
2009a).

growth of Γee (defined in the subsection 6.1.2 on the page 102), in the direction of its
low absolute values, due to the increasing role of screening effects.

4.1.3 The screened Hellmann-Gurskii-Krasko pseudopotential obtained
with the help of electron-electron generalized Kelbg and electron-ion,
ion-ion Hellmann-Gurskii-Krasko micro-pseudopotentials

As it has been described above in the Sec. 4.1.2, it is of a high interest to construct the
pseudopotential model which takes into account not only the quantum-mechanical and
the ion shell structure but also the screening field effects. We follow the method described
in the Sec. 4.1.2. In our paper (Sadykova et al., 2011a) we used the same Hellmann-
Gurskii-Krasko pseudopotentials ϕHGKei(r) (4.6), ϕHGKii(r) (4.8) but instead of the
earlier employed e− e Deutsch pseudopotential (4.11) we used the corrected e− e Kelbg
pseudopotential. The motivation for doing so is that the corrected Kelbg pseudopotential
provides better results at the low temperatures when quantum effects start to play a
significant role. The corrected Kelbg pseudopotential has the following form:

ϕee(r) =
e2

4πε0

{
1− e−r2/λ2

ee

r
+

√
π

λee
(1− erf(r/λee))

}
− kBTÃee(ξee)e−r

2/λ2
ee (4.27)

with Ãee =
√
π |ξee|+ ln

[
2
√
π |ξee|

∞∫
0
dyy exp(−y2)/(exp(π |ξee|/y)− 1)

]
, where λee =

h̄/
√
mekBT is De Broglie wave length of relative motion, here me is the electron mass, h̄

is the Planck constant and kB is the Boltzmann constant. Here ξee = −e2/(4πε0kBTλee)
is the interaction parameter.
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Figure 4.10: Comparison among the different e− i HGK pseudopotentials Φei and i− i pseu-
dopotentials Φii for beryllium plasmas (Be2+) (in atomic units). a)1: Screened
HGK (4.15), (4.19) at Te = Ti = 40 eV ,T ′e = 42.17 eV, Γee = 0.346; 2: Screened
HGK at Te = Ti = 20 eV , T ′e = 24.06 eV, Γee = 0.606, 3: Screened HGK at
Te = Ti = 13 eV , T ′e = 18.65 eV, Γee = 0.782, 4: HGK; b) 1: Dalgic et al. pseu-
dopotential at Te = Ti = 13 eV, T ′e = 18.65 eV, Γee = 0.782, 2: Screened HGK at
Te = Ti = 40 eV, T ′e = 42.17 eV, Γee = 0.346; 3: Screened HGK at Te = Ti = 20
eV, T ′e = 24.06 eV, Γee = 0.606, 4: Screened HGK (4.17) at Te = Ti = 13 eV,
T ′e = 18.65 eV, Γee = 0.782, 5: HGK. The plasma parameters are described in the
subsection 6.1.1 on the page 101 (Sadykova et al., 2011b).

We solve in Fourier space the following system of linear algebraic equations:

Φab(k) = ϕab(k)−
1

kBT
[neϕae(k)Φeb(k) + niϕai(k)Φib(k)] (4.28)

where a, b = i, e, ϕab(k) are the Fourier transforms of (4.27), (4.6), (4.8). The solution
of the system (4.28) reads:

Φei(k) =
Ze2

ε0∆
(2a− 1)Rcei2k2 − 1
k2(1 + k2Rcei

2)2 , (4.29)

Φee(k) =
e2

ε0∆

2 exp
(
−k2λ2

ee
4

)
k3λee

∫ kλee/2

0
et

2
dt+

1
k4rDi2

[
exp

(
−k

2λ2
ee

4

)
2((2a+ 1)Rcii2k2 + 1)
kλee(1 + k2Rcii

2)2

∫ kλee/2

0
et

2
dt−

(
(2a− 1)Rcei2k2 − 1

(1 + k2Rcei
2)2

)2
−
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AÃee(ξee)

(
1 + (2a+ 1)Rcii2k2 + 1

k2rDi2(1 + k2Rcii
2)2

)
exp

(
−k

2λ2
ee

4

)}
, (4.30)

Φii(k) =
Z2e2

ε0∆

{
(2a+ 1)Rcii2k2 + 1
k2(1 + k2Rcii

2)2 +

1
k4rDe2

[
exp

(
−k

2λ2
ee

4

)
2((2a+ 1)Rcii2k2 + 1)
kλee(1 + k2Rcii

2)2

∫ kλee/2

0
et

2
dt−

(
(2a− 1)Rcei2k2 − 1

(1 + k2Rcei
2)2

)2
−

AÃee(ξee)
(2a+ 1)Rcii2k2 + 1
k2rDe2(1 + k2Rcii

2)2 exp
(
−k

2λ2
ee

4

)}
, (4.31)

here rDe, rDi are the Debye radius for electrons and ions respectively, where
1/rDi2 = z2e2ni/(ε0kBT ), 1/rDe2 = e2ne/(ε0kBT ), A = kBTπ

3/2λ3
eeε0/e2 and ∆ is:

∆ =1 +
2 exp

(
−k2λ2

ee
4

)
k3rDe2λee

∫ kλee/2

0
et

2
dt+

(2a+ 1)Rcii2k2 + 1
k2rDi2(1 + k2Rcii

2)2+

1
k4rDe2rDi2

[
exp

(
−k

2λ2
ee

4

)
2((2a+ 1)Rcii2k2 + 1)
kλee(1 + k2Rcii

2)2

∫ kλee/2

0
et

2
dt−

(
(2a− 1)Rcei2k2 − 1

(1 + k2Rcei
2)2
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−

AÃee(ξee)

rDe2

(
1 + (2a+ 1)Rcii2k2 + 1

k2rDi2(1 + k2Rcii
2)2

)
exp

(
−k

2λ2
ee

4

)
, (4.32)

The present approximation is restricted to the constraint Γii . 1. The pseudopotential
Φab(r) can be restored from (4.29-4.32) by Fourier transformation

Φab(r) =
1

2π2r

∫
Φab(k)k sin(kr)dk.

In a weakly coupled regime the equation (4.30) turns into the following:

Φee(r) =
e2

4πε0

{
e−r/rD − e−r2/λ2

ee

r
+

√
π

λee
(1− erf(r/λee))

}
− kBTÃee(ξee)e−r

2/λ2
ee

(4.33)
with 1/rD2 =

∑
c=e,i ec

2nc/(ε0kBT ). As one can clearly see from the Figures 4.11 a, b,
c and d at high Γii the difference between the screened HGK pseudopotentials with e− e
corrected Kelbg pseudopotential (4.29-4.19), e− e Deutsch pseudopotential (4.15-4.19)
and corresponding unscreened pseudopotentials (4.27), (4.11) and (4.6), (4.8) is quite
large, whereas when Γii decreases the difference becomes not so much considerable as
shown in the Figure 4.11 d. In a case for e− e interaction at relatively low temperature
T = 8000K, higher Γii and small distances the difference between the corrected Kelbg
and the Deutsch pseudopotentials as well as between them and their corresponding
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screened pseudopotentials is significant, whereas for e− i and i− i interactions the
difference between the HGK pseudopotentials with the corrected Kelbg and the Deutsch
micro-pseudopotentials is almost negligible. This can be explained by that fact that, as
mentioned earlier, at low temperatures and high densities the screening and quantum
effects start to play a big role especially for e− e interactions. It is worth to note that
the Debye screening approximation of the pseudopotentials (4.24), (4.25), (4.33) at
r/rL > 0.7 describes quite well behaviour of the screened HGK pseudopotential at low
Γii as shown in Fig. 4.11 d, b. However, at the moderately high Γii one can see that the
difference between these pseudopotentials and the screened HGK pseudopotentials at
the small distances R = r/rL is quite considerable, especially for e− e potentials in the
Fig. 4.11 b.

4.2 Electric microfield distributions at an ion in alkali
two-component plasmas with an account of the ion shell
structure

We consider the two-component electron-ion Li+, Na+, K+, Rb+, Cs+ thermally
equillibrium and isotropic plasma (Ze− = −e+ (Z = 1) and masses mi >> me )
consisting of N = Ne +Ni +NR (Ne = Ni,NR = 1) charged particles and a radiator
(ion) at a temperature T in a volume Ω. The method which is used for the calculation
is the generalized coupling-parameter integration technique for two-component plasmas
introduced by Ortner et al. (Ortner et al., 1999). The final calculation formular derived
in the section 2.3 on the page 24 for the microfield probability distribution function at
an ion is

P (β) =
2β
π

∞∫
0

k∗Ti(k
∗) sin(βk∗)dk∗.

Here Ti(k) is the Fourier transform of the electric microfield distribution Q =<
exp(ı~k · ~E) > with ~E being the total electric microfield, β = ε/ε0, k∗ = kε0, ε0 =
e/(4πε0r

2
ei) = en2/3/((36π)1/3ε0), where n = ne + ni.

The EMD studied in the work (Sadykova et al., 2009b,a) is given by the Debye screen-
ing approximation described by the generalized two-body correlation function G(~r,~k)
(2.71). The Fourier transform of the electric microfield distribution Ti(l) is calculated
using Eq. (2.61) or (2.69) with Debye-Hückel effective fields (2.67) and pair correlation
function (RDF) gαR(r) (2.70) where for determination of RDFs the expressions (4.24)
in Sec. 4.1.2 for the screened Hellmann-Gurskii-Krasko pseudopotential in the Debye
screening approximation obtained in (Sadykova et al., 2009a) are used.
To validate calculations of the microfield distributions obtained for the HGK inter-

action model by the Ortner et al. method we use direct semiclassical Monte-Carlo
simulations with the HGK pseudopotentials. Since the MC simulation automatically
takes the plasma screening effects into account, the comparison allows us to estimate
the accuracy of the Debye screening approximation in our theory, remaining within the
same interaction model (Ebeling et al., 1999), (Zamalin et al., 1977). We use a system
of Ne +Ni = 400 electrons and ions in a cubic cell of the volume selected according
to the plasma coupling parameter Γii. The minimum-image convention of periodic
boundary conditions is applied to the simulation cell. The pairwise electron-ion and
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Figure 4.11: Comparison among the various e− i (a), e− e (b), i− i (c) pseudopotentials
at Γii ≈ 1.56, T = 8000 K, ne = 1026 m−3 and e− i pseudopotential (d) at
Γii ≈ 0.335, T = 8000 K, ne = 1024 m−3 of Cs+ plasma against the dimen-
sionless distance R = r/rL. (a) 1: e− i HGK pseudopotential (4.6); 2: e− i
Screened HGK pseudopotential with the e− e Deutsch pseudopotential as a micro-
pseudopotential (4.15); 3: e− i Screened HGK pseudopotential (4.29) with the
e− e corrected Kelbg pseudopotential (4.27) as a micro-pseudopotential; 4: e− i
Screened HGK pseudopotential in the Debye screening approximation (4.24); (b)
The e− e corrected Kelbg (red) and Deutsch (black) sets of pseudopotentials.
1: Corrected Kelbg (4.27) or Deutsch pseudopotential (4.11); 2: Screened HGK
pseudopotential with the e− e corrected Kelbg (4.30) or Deutsch pseudopotentials
as micro-pseudopotentials (4.16); 3: e− e Screened HGK pseudopotential in the
Debye screening approximation with e− e Deutsch (4.25) or corrected Kelbg pseu-
dopotentials (4.33) as micro-pseudopotentials; (c) 1: i− i HGK pseudopotential
(4.8); 2: i− i Screened HGK pseudopotential with the e− e Deutsch pseudopoten-
tial as micro-pseudopotential (4.17); 3: i− i Screened HGK pseudopotential (4.31)
with the e− e corrected Kelbg pseudopotential (4.27) as micro-pseudopotential ; 4:
i− i Screened HGK in the Debye screening approximation (4.24); (d) Description
of the legend is the same as in the Fig. 4.11 a (Sadykova et al., 2011a). Here
rL ' 39.4rB and kBT ' 0.025 Ha.
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4 EMDs in electron-ion TCPs with an account of the ion shell structure

ion-ion interactions are set to the corresponding unscreened HGK pseudopotentials. The
electron-electron interaction potential, not provided by the unscreened HGK model, is
chosen to be of the corrected Kelbg type (Ortner et al., 1999). Random single-particle
displacements with adjustable amplitude are used to keep the Metropolis algorithm
acceptance ratio around 0.5. The instantaneous microfields are numerically obtained by
calculating direct Coulomb interaction contributions from all particles (electrons and
ions) at a set of measurement points. The measurement points can be placed either at
random locations (for microfields at a neutral point) or at plasma ions (for microfields
at an ion) or at electrons (for microfields at an electron). The electric microfield distri-
butions are obtained from 106 − 4 · 107 MC steps after the system equilibration. Long
MC simulation runs are required to obtain the distribution tails for β > 10 (see Figures
4.21 a and b. We note that the microfield distributions can be simulated in a similar
way by the semiclassical Molecular Dynamics method. Since the dynamical properties of
the microfields were not required, MC appeared to be more efficient numerically.

In the Figures 4.12-4.16 a, b the comparative MC results for EMD calculation for H+

hydrogen and singly ionized Li+, Na+, K+, Rb+, Cs+ plasmas in the framework of the
Hellmann-Gurskii-Krasko pseudopotential model at the temperature T = 30000K and
different Γii = e2/(4πε0kBTrii) (Γii = 0.2 and Γii = 2 respectively) are shown (here
rii = (3/(4πni))1/3 is the average distance of the electrons, with ni being ion density).
In the Figures 4.12-4.16 a there is a good agreement between the theory and MC, MD
simulations as well as between the EMD curves for alkali plasmas and H+ plasma which
can be explained by that fact that at low Γii = 0.2 the screening, quantum effects
and the influence of the ion shell structure are negligible. However at higher Γii = 2
the difference between the alkali and hydrogen EMDs is quite big which demonstrates
the influence of the ion shell structure on the EMD shape. The EMD curves (2.49)
obtained on a base of theoretical model and the curves obtained from MC simulations
are shifted toward the lower fields in comparison with the Holtsmark distribution. In the
Figures 4.12 a, 4.18 the curves present two models: one within the e− i, i− i screened
HGK model described by (4.24) and another within the e− i screened HGK model and
i− i screened Hard-Sphere (Core) (Hard-Sphere - Debye-Hückel) model described by
e− i (4.24) and i− i (4.9), (3.3) on the page 64 correspondingly. As one can see, at
low Γii = 0.2 the curves representing different pseudopotential models almost coincide
whereas at higher Γii = 1.2 we observe a slight difference meaning that at low and
moderate Γii there is no substantial difference between the i− i HGK and HS models.
The present results have been found in an excellent agreement with the MC simulations
even at moderate Γii = 0.8 for Cs+ and Li+ plasmas shown in Figure 4.17 a, b. One
can see that with the increasing Γii the deviation from MC increases as it is shown in
Figure 4.18 for Li+ plasma at Γii=1.2 and the peaks of EMDs shift toward the lower
fields and their magnitude increases shown in Fig. 4.19 a and 4.19 b. The agreement
between the improved Molecular Dynamics and the theory appeared to be better at
Γii = 0.8, while at higher Γii = 1.2 the agreement is relatively good. This can be
explained by that fact that the Ortner et al. method provides reliable results only for
low and moderate Γii. We should note that Eq. (2.70) represents the pair distribution
function of the screened Hellmann-Gurskii-Kasko pseudopotential in the Debye screening
approximation (4.24) which enters the expression for EMD (2.49). Hence, we can make a
conclusion that these pseudopotentials (4.24) can be successfully used even at moderate
Γii allowing to avoid the inverse transformation of huge expressions of the screened
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Figure 4.12: EMDs in the framework of the Hellmann-Gurskii-Krasko pseudopotential model
for a K+ and H+ plasma at T = 30000 K and (a) Γii = 0.2, (b) Γii = 2 (MC)
(Sadykova et al., 2009b).

Hellmann-Gurskii-Kasko pseudopotentials (Sadykova et al., 2009a). Taking into account
that singly ionized alkali and hydrogen plasmas have the same macroscopic plasma
parameters: Z, Γii,n,T , one can expect that the curves will coincide in the framework
of the pseudopotential models where the ion shell structure is not considered or when
the influence of plasma parameters on ion shell structure is negligible, what we can
observe in the figures 4.12-4.16 a. However, if we take a look at the Figure 4.20, where
the comparison among the hydrogen H+ where no ion shell exists and singly ionized
alkali Li+, Na+, K+, Rb+, Cs+ plasmas obtained from MC at Γii = 2 is shown, we
can see that at this value of Γii the difference among curves is significant demonstrating
again the influence of the ion shell structure. We expect that with increasing of Γii the
difference becomes even more significant. Moreover the tails (high field regions) of alkali
plasmas compared to that of the hydrogen become less “heavier” (longer) at higher fields
meaning that the attractive forces between the particles of opposite charges become
weaker, i.e. the fields weaker, due to the ion shell screening effects.

The EMD studied in the present work is constrained to the Debye screening approxima-
tion given by (2.71), (4.24). Due to this fact we extended calculations of EMD to the case
of moderately coupled plasma in the framework of the screened Hellmann-Gurskii-Krasko
pseudopotentials (4.15), (4.17), (4.19) in the higher-order screening approximation com-
pared to the screened Hellmann-Gurskii-Krasko pseudopotentials in the Debye screening
approximation as recently published in (Sadykova et al., 2009b).

4.2.1 The tails

In the Figure 4.21 a, b the comparison between the tails of Na+, Cs+, H+ plasmas at
Γii = 0.2 and Γii = 2 respectively and T = 30000K are shown. We have found that the
behaviour of EMD for strong fields obeys either to the power law

P (β) ∼ Aβ−α−1 (4.34)
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Figure 4.13: EMDs in the framework of the Hellmann-Gurskii-Krasko pseudopotential model
for a Na+ and H+ plasma at T = 30000 K and (a) Γii = 0.2, (b) Γii = 2 (MC)
(Sadykova et al., 2009b).
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Figure 4.14: EMDs in the framework of the Hellmann-Gurskii-Krasko pseudopotential model
for a K+ and H+ plasma at T = 30000 K and (a) Γii = 0.2, (b) Γii = 2 (MC)
(Sadykova et al., 2009b).
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Figure 4.15: EMDs in the framework of the Hellmann-Gurskii-Krasko pseudopotential model
for a Rb+ and H+ plasma at T = 30000 K and (a) Γii = 0.2, (b) Γii = 2 (MC)
(Sadykova et al., 2009b).
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Figure 4.16: EMDs in the framework of the Hellmann-Gurskii-Krasko pseudopotential model
for a Cs+ and H+ plasma at T = 30000 K and (a) Γii = 0.2, (b) Γii = 2 (MC)
(Sadykova et al., 2009b).
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Figure 4.17: EMDs in the framework of the Hellmann-Gurskii-Krasko pseudopotential model
for a Cs+ plasma (a) and EMD comparison between Hard-Sphere and HGK
models for Li+ (b) plasma at T = 30000 K and Γii = 0.8 (Sadykova et al., 2009b).
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Figure 4.18: Comparison of EMD calculations in the framework of the Hellmann-Gurskii-Krasko
pseudopotential model and Hard-Sphere Model for a Li+ plasma at T = 30000 K
and Γ = 1.2 (Sadykova et al., 2009b).
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Figure 4.19: EMD in the framework of the Hellmann-Gurskii-Krasko pseudopotential model
for a Li+-plasma at T = 30000 K in dependence on Γii in a range a) Γii = 0.2÷ 1,
b) its contour plot.
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Figure 4.20: Comparison of MC results for EMDs in the framework of the Hellmann-Gurskii-
Krasko pseudopotential model for alkali plasmas and H+ plasma at T = 30000 K
and Γii = 2 (Sadykova et al., 2009b).
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with the so called α Levy exponent found by the Levy stable distribution (Feller, 1970),
where the Holtsmark limit, valid at Γii → 0 with (α = 3/2), belongs to, or to the mixed
power-exponential law (2.84) obtained by A. Y. Potekhin et al. in (Potekhin et al., 2002),

P (β) ∼ Bβ−5/2 exp(−Cβ1/2 − β−3/2)

depending on whether the field is measured at a charge (ion) or a neutral point and
which plasma parameters are considered. When the field is measured at a neutral point
or charge (ion) at low value of Γii then the EMD obeys to the power law (4.34) with an
exponent α ' 3/2 for EMD at a neutral point, whereas when Γii is moderate and the
field is measured at an ion then the distribution obeys to the Potekhin form (2.84). In
the opposite limit of extremely strong correlations (Γii →∞), Potekhin et al. derived
a more accurate asymptotic expression (2.84) compared to the Mayer model for the
charged test particle, which yields (2.83) (Mayer, 1947)

P (β) =
1

2
√
πA3/2 Γii3/2β2 exp

(
−β

2Γii
4A

)
,

where A = 15
4

√
2
π

1
3! . The Mayer model (2.83) fails in the strong-field limit, because in

this case one should include also a test ion that lies at a very short distance r ∼ β−1/2

from the nearest perturbing ion. Then the geometrical and Boltzmann factors give
P (β) ∼ β−5/2 exp(−Γiiβ1/2). In the recent work a whole spectrum of exponents α+ 1
has been obtained for electron-positron plasma in dependence on density and temperature
(Sadykova et al., 2010a,b). In the present work for alkali and hydrogen plasmas, in a
case of EMD at a an ion at Γii = 0.2 we have found that A = 0.79, α ' 1.15 for Na+,
A = 0.82, α ' 1.16 for Cs+ and A = 0.75, α ' 1.14 for H+ plasmas with asymptotic
errors: ∼ 0.2 % for α, ∼ 1.3 % for A as it is shown in the Figure 4.21 a, whereas at high
value of Γii = 2 we have obtained B ' 497, C ' 2.17 for Na+ plasma and B ' 20.8,
C ' 1.68 for Cs+ plasma with asymptotic errors: ∼ 3 % for B, ∼ 0.5 % for C shown
in the Figure 4.21 b. At a neutral point it is compatible with α = 3/2 as shown in the
Figures 4.21 a, b for Cs+, H+ plasmas characterizing the Holtsmark distribution with
asymptotic errors: ∼ 1 % for A, ∼ 0.15 % for α. In a case of hydrogen the tail is even
“heavier” as that of the alkali’s. The field at a proton shows a different decay pattern,
which we call the modified Potekhin law (3.52), defined by

P (β) ∼ Bβµ exp(−Cβ1/2 − β−3/2)

with B ' 0.5, µ ' −1.06 and C ' 0.27 with asymptotic errors: ∼ 0.8 % for B, ∼ 1 % for
µ and ∼ 1.8 % for C. This fact can be explained by the stronger Coulomb field created
by protons in comparison with alkali ions where the ion charges are screened by the shell
electrons. This allows us to make the following conclusion that at high density, when
Γii increases, the ion shell structure starts to play a big role and should be thoroughly
taken into account.
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Figure 4.21: The EMD tails for a Cs+, Na+ and H+ plasma at T = 30000 K and a) Γii = 0.2.
The data are clustered in two groups: (i) The data for H+ and alkali plasmas: H+

plasma at an ion with the fitted Levy parameters of about A = 0.75, α ' 1.14;
alkali plasmas at an ion with the fitted Levy parameters A = 0.82, α ' 1.16
for Cs+ and A = 0.79, α ' 1.15 for Na+ plasmas. (ii) H+ , Cs+ plasmas at
a neutral point with almost the same Levy parameters - A = 1.7, α ' 1.54; b)
Γii = 2. The data are clustered in three groups: (i) H+ plasma at an ion with
a fitted to the modified Potekhin form (3.52) parameters of B ' 0.5, µ ' −1.06
and C ' 0.27; (ii) Alkali plasmas at an ion with fitted to the Potekhin form (2.84)
parameters B ' 497, C ' 2.17 for Na+ plasma and B ' 20.8, C ' 1.68 for Cs+
plasma. (iii) H+ plasma at a neutral point with the fitted Levy parameters of
about A = 0.83, α ' 1.37, Cs+ plasma -A = 1.66, α ' 1.52 (Sadykova et al.,
2009b). The tail of the Holtsmark distribution (2.25) which is between the cases
(i) and (ii) is demonstrated for comparison.
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4.3 Electric microfield distributions in a moderately coupled
plasma approximation

We consider the two-component electron-ion Li+, Na+, K+, Cs+ thermally equillibrium
and isotropic plasma ( Ze− = −e+ (Z = 1) and masses mi >> me ) consisting of
N = Ne + Ni + NR (Ne = Ni,NR = 1) charged particles and a radiator (ion) at
a temperature T in a volume Ω. The method which is used for the calculation is
the generalized coupling-parameter integration technique for two-component plasmas
introduced by Ortner et al. (Ortner et al., 1999). The final calculation formula for the
microfield probability distribution function at an ion is the following (2.49)

P (β) =
2β
π

∞∫
0

k∗Ti(k
∗) sin(βk∗)dk∗

Here Ti(k) is the Fourier transform of the electric microfield distribution Q =< exp(ı~k ·
~E) > with ~E being the total electric microfield, β = ε/ε0, k∗ = kε0, ε0 = e/(4πε0r

2
ei) =

en2/3/((36π)1/3ε0) with rei = (3/(4πn))1/3 being the e− i interparticle distance, where
n = N/Ω, n = ne + ni.

In the recent work (Sadykova et al., 2009b) on a base of the Ortner et al. method the
EMDs for alkali plasmas at low and moderate Γii have been calculated. There the RDFs
have been determined in the Debye screening approximation (4.24) (weakly coupled
regime). Here we use a better approximation for RDF, namely the RDF in a moderately
coupled plasma approximation obtained with the help of the screened HGK (4.15), (4.17),
(4.19).

The EMD studied in the work (Sadykova et al., 2011a) is considered in the higher
order screening approximation given by the RDF gαR(r) (2.70) where for determination
of the RDFs the expressions (4.15), (4.17), (4.19) (Sadykova et al., 2009a) compared
to the Debye screening approximation given by (4.24) on the page 66 are used. The
generalized two-body correlation function G(~r,~k) is determined as described in previous
chapters as (2.71). The Fourier transform of the electric microfield distribution Ti(l) is
calculated using Eq. (2.61) or (2.69) with Debye-Hückel effective fields (2.67).
As one can see in the Fig. 4.22a, b, there is a good agreement between the EMD in

the moderately coupled approximation and the Monte Carlo (MC) simulations, whereas
there is a big discrepancy between the EMD in Debye screening approximation and MC.
In a case of Li+ the curves almost coincide. This can be explained by that fact that the
screening effects in equations (4.15), (4.17), (4.19) are better taken into account than
in equations (4.24) for a weakly coupled plasma (Sadykova et al., 2009a). It is worth
to note that with an increase of number of band electrons in a closed shell from Li+

till Cs+ the discrepancy between the present theory and MC grows. This demonstrates
again the significant role of ion shell structure at high values of Γii. For comparison the
corresponding EMDs (MC data) for H+-plasmas were given too. In this case no ion
shell exists and we may see clearly the influence of the ion shell structure. This allows
us to conclude that the present moderately coupled plasma approximation provides a
considerable improvement in the EMD calculation at moderate Γii and should be studied
further in a future.
However, we see a wide field of study of EMD in a moderately and strongly coupled
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TCP plasmas in the framework of the screened Hellmann-Gurskii-Krasko pseudopotential
model on a base of potential-of-mean-force exponential (PMFEX) method proposed by
Nersisyan et al. in (Nersisyan et al., 2005). With an increasing value of Γii the ion shell
structure starts to play a significant role. In a strongly coupled regime the screened
HGK pseudopotentials and corresponding RDFs can be determined with the help of the
hypernetted-chain (HNC) integral equation technique with the HGK pseudopotentials
as micro-pseudopotentials (Hansen and McDonald, 1990).

4.4 Conclusions

The electric microfield distributions have been calculated for Hydrogen H+, singly
ionized alkali plasmas (Li+, Na+, K+, Rb+, Cs+) at the location of an ion using
the generalized coupling-parameter integration technique for two-component plasmas
introduced by Ortner et al. in comparison with MC simulations. The distributions
are studied in the framework of the Hellmann-Gurskii-Krasko pseudopotential model
which takes into account the ion shell structure. Our models take into account both the
quantum-mechanical, ion shell structure and screening field effects. We used the screened
Hellmann-Gurskii-Krasko pseudopotential in the Debye screening approximation as well
as in a higher-order screening HGK approximation valid also for a moderately coupled
plasma, both described in Subsec. 4.1.2. The influence of the coupling parameter
along with the ion shell structure on the EMD shape and position was investigated.
With an increasing value of Γii the ion shell structure starts to play a significant role.
High density as well as the coupling parameter causes a shifting of the maximum of
probability to lower fields and changing the tails this way significantly modifying the
electric microfield distributions. For comparison the corresponding EMDs forH+-plasmas
were given too. In this case no ion shell exists and we may see clearly the deviation
of H+-curve from alkali curves and consequently the influence of the shell structure.
For RDFs of Li+, Na+, K+, Cs+ plasmas we used the screened Hellmann-Gurskii-
Krasko pseudopotential in a moderately coupled plasma approximation. The moderately
coupled plasma approximation compared to the Debye screening approximation makes a
considerable improvement in the EMD calculation at moderate Γii leading to a much
better agreement with the Monte-Carlo simulations. However, we see a wide field of
study of EMD in a moderately and strongly coupled TCP plasmas in the framework
of the screened Hellmann-Gurskii-Krasko pseudopotential model on a base of PMFEX
method proposed by Nersisyan et al. . With an increasing value of Γii the ion shell
structure starts to play a significant role. In a strongly coupled regime the screened
HGK pseudopotentials and corresponding RDFs can be determined with the help of the
hypernetted-chain (HNC) integral equation technique with the HGK pseudopotentials
as micro-pseudopotentials. The theoretical results were compared with Monte-Carlo
simulations. We have derived a new type of screened HGK pseudopotential described
in Subsec. 4.1.3, where for electron-electron interaction we used the corrected Kelbg
micro-pseudopotential instead of earlier applied Deutsch pseudopotential.
Summarizing our main results:

(i) The shapes of EMD of the alkali plasmas at moderate values of Γii are different.
We observe large differences compared to the Holtsmark distribution and to the EMD
distribution of hydrogen plasma. This allows us to say that the ion shell structure
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Figure 4.22: Comparison of EMD calculations in the framework of the Hellmann-Gurskii-Krasko
pseudopotential model in a moderately coupled plasma approximation (Sadykova
et al., 2011a) for H+, a) Li+, Na+ and b) K+, Cs+ plasmas at T = 30000
K and Γii = 2. 1: EMD with RDF (2.70) obtained from the screened HGK in
Debye screening approximation (4.24) or (20) in (Sadykova et al., 2009a); 2: EMD
with RDF obtained from the screened HGK in the moderately coupled plasma
approximation (4.15), (4.17), (4.19); 3, H+: Monte Carlo simulations, which were
obtained in (Sadykova et al., 2009b).
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influences the EMD strongly;
(ii) The peak of the EMD distribution of alkali plasmas is positioned in between the
peak for hydrogen, which is located at lower fields and the Holtsmark distribution which
is located at higher fields;
(iii) The tails of the EMD at the location of an ion or neutral point at Γii = 0.2, T =
30000K shown in Figure 4.21 a are in all cases of Levy type P (β) ∼ β−α−1 with α ' 3/2
for EMD at a neutral point. When the field is measured at an ion at moderate Γii = 2 the
tails obey to the power-exponential Potekhin form P (β) ∼ Bβ−5/2 exp(−Cβ1/2−β−3/2)
whereas in Hydrogen plasma it obeys to the modified Potekhin form shown in Figure
4.21 b. In the Figure 4.21 b the Holtsmark limit with the exponent α = 1.5 is again
in the middle, between the hydrogen plasma with B ' 0.5, µ ' −1.06 and C ' 0.27
and relatively fast Potekhin power-exponential decay with B ' 497, C ' 2.17 for Na+
plasma and B ' 20.8, C ' 1.68 for Cs+ plasma. The relatively fast decay of the
microfield distribution of alkali plasmas is due to the weakening of strong fields due to
the screening by the ion cores. This prevents very high fields. We leave a detailed study
of this remarkable effect to future work;
(iv) The moderately coupled plasma approximation compared to the Debye screening
approximation makes a considerable improvement in the EMD calculation at moderate
Γii leading to a much better agreement with the Monte-Carlo simulations.
(v) In the parameter range of weakly coupled plasmas considered here the theory by
Ortner et al. with Debye screening gives a reasonable approximation which is in a good
agreement with MC simulations.
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5 Comparison of electric microfield
distributions with the experimental optic
Li2+ and Li+ data

Stark broadening of spectral lines, an effect widely applied in plasma diagnostics to
evaluate plasma densities in stellar atmosphere or in laboratory (Griem, 1974). In this
section we would like to compare our theoretical results for the EMDs with the measured
spectra of hydrogen-like lithium Li2+ spectra irradiated by a nanosecond laser pulse
of moderate intensities (I ≈ 1011 − 1013 W/cm2) (Schriever et al., 1998b,a) using the
results of spectral line theory obtained in (Lorenzen et al., 2008) and of Li+ spectra
irradiated by a laser pulse (λ = 1064 nm) of moderate intensity (I ≈ 1010 W/cm2)
(Doria et al., 2006) using the results of spectral line theory obtained by M. Koubiti on a
base of formalism of Stark broadening (Koubiti et al., 2010) 1.
In the work (Lorenzen et al., 2008) pressure broadening of Lyman-lines in dense

hydrogen-like lithium plasmas is studied using a quantum statistical approach to the
line shape in dense plasmas. The Lyman series is the series of transitions and resulting
ultraviolet emission lines of the hydrogen atom as an electron goes from n ≥ 2 to n = 1
(where n is the principal quantum number referring to the energy level of the electron).
The transitions are named sequentially by Greek letters: from n = 2 to n = 1 is called
Lyman-alpha, 3 to 1 is Lyman-beta, 4 to 1 is Lyman-gamma, etc. The series is named
after its discoverer, American physicist Theodore Lyman. An interest in Lyman-α
emission of hydrogen-like lithium is triggered by the search for next-generation light
sources for EUV (extreme ultraviolet) lithography.

We also present results obtained by M. Koubiti for the Stark broadening of Li+ plasma
using the standard Stark broadening theory (Griem, 1974) on a base of the semi-classical
approach where the radiator and perturbers are respectively considered as a quantum
system and classically moving particles (Koubiti et al., 2010), (Talin et al., 1997).

In both works, Koubiti and Lorenzen et al., the authors study a hot and dense plasma
created by irradiating lithium with a high-intensity laser (I > 1010 W/cm2). Under these
conditions strong modifications of spectral line features as compared to isolated lines are
observed. Stark broadening as well as Doppler shift and broadening play an important
role. Due to the sensitivity of these spectral line features to plasma parameters and
composition, optical spectroscopy serves as a powerful diagnostic tool for the plasmas
(Griem, 1997).

Since the classical description of broadening of absorption lines by collisions with
surrounding atoms in 1906 by Lorentz (Lorentz, 1906), the calculation of pressure
broadening has evolved drastically (Griem, 1997). The most widely used approach
is due to Griem (Griem, 1974) and utilizes an impact approximation together with a

1PIIM, UMR 6633 CNRS/Université de Provence, centre Saint-Jérôme, service 232, F-13397 Marseille
Cedex 20, France; mohammed.koubiti@univ-provence.fr
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5 Comparison of EMDs with the experimental optic Li2+ and Li+ data

semi-classical description of perturber-radiator interaction.

5.1 Theory of line broadening for Li2+ plasma

Here we would like to describe briefly the spectral line broadening approach used in
(Lorenzen et al., 2008). Pressure broadening comprises all shift and broadening effects
caused by the medium that surrounds the emitting ion. Here, we outline a microscopic
approach to include the most important one. We consider a plasma at a electron density
ne being in a thermal equilibrium at a fixed temperature T . We consider a radiator
with nuclear charge ZN . For simplicity, we restrict our presentation to one ion species
with charge Z = 2 in the medium. Due to the different masses of ions and electrons,
the broadening caused by ions is calculated in quasi-static approximation whereas the
broadening of the electrons is considered in binary collisions approximation (Griem,
1974). Lorenzen et al. applied a quantum-statistical approach based on thermodynamic
Green’s function (Kraeft et al., 1986). This approach has been successfully applied to
diagnose experimental hydrogen plasma (Günter, 1995).

In these approximation, the pressure-broadened line profile Ipr(∆ω) is given by (Günter,
1995)

Ipr(∆ω) =
ω0

4

8π3c3 exp
[
− h̄ω0
kBT

](
1 + ∆ω

ω0

)4
exp

[
− h̄∆ω
kBT

]

×
∑

i,i′,f ,f ′

< i|~r|f >< f ′|~r|i′ >
∞∫

0

dEP (E) < i| < f |L−1(∆ω,E)|f ′ > |i′ >

 ,

(5.1)

where ∆ω = ω − ω0 is the difference between the considered frequency ω and the
frequency of the unperturbed electronic transition ω0. P (E) is the ionic electric microfield
distribution, i.e. the probability distribution to find the electric field E at the location
of the ionic radiator (emitter) due to the surrounding ions immersed in a uniform
neutralizing background, see Secs. 4.2, 4.1.2. Medium modifications enter also the line
profile operator

L−1(∆ω,E) = h̄∆ω−Re[Σi(ω,E)− Σf (ω,E)]− ı Im[Σi(ω,E) + Σf (ω,E)] + ıΓVif
(5.2)

via self-energies
∑
i(ω,E) of initial (n = i) and final states (n = f = ground state).

The vertex correction ΓVif contains the coupling between the upper and the lower state
and vanishes for the Lyman series (Günter, 1995). Following the argument above, the
self-energy is approximated by an electronic part which is independent of the ionic
microfield and a frequency-independent ionic part

Σn(ω,E) = Σnel(ω) + Σnion(E) (5.3)

Furthermore, the thermal motion of the ions leads to Doppler broadening and is accounted
for by a convolution of the pressure broadened profile, Eq. (5.1), with a Maxwellian
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velocity distribution

I(∆ω) =
c

ω0

√
mion

2πkBT

∞∫
−∞

d∆ω′Ipr(∆ω′) exp
[
−mionc

2

2kBT

(
∆ω− ∆ω′

ω0 + ∆ω′

)2]
. (5.4)

Here, mion is the mass of the emitting ion. Finally, the normalized line profile is defined
by

P (∆ω) =
I(∆ω)∫
I(∆ω)d∆ω

(5.5)

The self-energy of the electrons has been derived within a quantum-statistical many-
particle approach using thermodynamic Green’s functions (Kraeft et al., 1986). Account-
ing for dynamical screening, the emitter-electron interaction reads

V s(k,ων) = V (k)

1 +
∞∫
−∞

dω

π

Im ε−1(k,ω+ ıδ)

ω− ων

 (5.6)

depending on the bosonic Matsubara frequency ων

h̄ων =
πν

−iβ
+ µ, ν =

{
±1, ±3, · · · for fermions,

0,±2, ±4, · · · for bosons.

with µ being the chemical potential, and the wave vector k. The electronic self-energy
can be evaluated in Born approximation as

Σnel(∆ω) = −
∫

d3k

(2π)3V (k)
∑
α

|M0
nα(k)|2

∫ ∞
−∞

dω

π
(1 + nB(ω))

Im ε−1(k,ω+ ıδ)

∆ω+ ωnα − (ω+ ıδ)
.

(5.7)
Here, the first term in Eq. (5.6) (Fock exchange) is neglected and the Born approximation
takes into account only weak collisions which are justified within the parameter range
used in the work.

For evaluation of Eq. (5.7) the frequency-independent case ∆ω = 0 has been considered.
The dielectric function ε is approximated in the random phase approximation (RPA).
M0
nα(k) is the vertex contribution for virtual transitions from n to α. V (k) = Zione

2/ε0k
2

is the Fourier transformed Coulomb potential and nB(ω) = (exp[ h̄ω/(kBT )]− 1)−1 is
the Bose function.

Assuming a quasi-static approximation, the ionic contribution to the self energy of the
ions is given by level perturbations due to the electric field of the ions (Stark effect) and
due to the field gradients (quadrupole effect). In (Lorenzen et al., 2008) the Stark effect
for hydrogen and hydrogen-like ions has been evaluated using the perturbation theory
(Landau and Lifschitz, 1977) while for the quadrupole effect the Halenka’s expression
has been used (Halenka, 1990). For further details we refer a reader to (Lorenzen et al.,
2008).

93



5 Comparison of EMDs with the experimental optic Li2+ and Li+ data

5.2 Formalism of Stark broadening for Li+ plasma

When an atomic or ionic emitter is embedded in a plasma the spectral line it emits
is affected by the electric microfield created by the plasma electrons and ions. This is
known as Stark effect. Stark broadening theory describes the effect of charged particles
on line profiles. The so-called standard theory of Stark broadening (Griem, 1974) is
based on a semi-classical picture, i.e. the emitter and the perturbers are respectively
considered as a quantum system and classically moving particles whose movement is
governed by Newton’s equations. In the framework of the dipole approximation, the
profile I(∆ω) of a line is the one-side Fourier transform of the dipole autocorrelation
function Cdd(t):

I(∆ω) =
1
π

Re
∫ ∞

0
Cdd(t) e

i∆ωtdt, (5.8)

where ∆ω = (ω − ω0) is the detuning from the unperturbed angular frequency ω0 of
the line and Re designates the real part of the integral. In the Liouville space which
is a direct product of two Hilbert spaces, the dipole autocorrelation function takes the
following form:

Cdd(t) = 〈〈~d∗|{U(t)}|~dρ0〉〉, (5.9)

where ~d and ρ0 are respectively the dipole and the density matrix of the emitter while
U(t) represents the emitter evolution operator and the brackets {. . . } denote an ensemble
average over the states of the perturbers. The emitter evolution operator U obeys the
following stochastic Liouville equation:

∂U

∂t
= −iLU , (5.10)

where the Liouvillian operator L = L0 + l(t) is the sum of two terms L0 and l(t)
representing respectively the Liouvillian of the unperturbed emitter (including the fine
structure term) and that of the time-dependent emitter-perturber interaction. The latter
may be written as follows:

l(t) = −~d · ~E(t),

where ~E(t) represents the electric field due to the charged perturbers composing the
plasma. The line profile (5.8) can be expressed as follows:

I(∆ω) =
1
π

Re
∫ ∞

0
P (E)dE

·
∑

α,β,α′,β′
dαβ〈〈αβ

∣∣∣∣∣
[
i∆ω− i(Ha(E)−Hb(E))

h̄
+Qab

]−1∣∣∣∣∣α′β′〉〉d∗α′β′ , (5.11)

where P (E) represents the ionic EMD, the electron broadening is represented by the
collision operator Qab, H is the Hamiltonian, the a set of emitter states α and α′

correspond to the upper levels of the line which are ion-field dependent; the b set of the
states, β and β′, to the lower levels which are assumed to be unperturbed. Transitions
occur from one level of the subsystem a to a level of the subsystem b. Ha and Hb have
eigenstates |a〉 and |b〉 respectively.
Since electrons and ions in a plasma have typical velocities differing by more than
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an order of magnitude their interactions with the emitter are characterized by different
timescales and this justifies the natural separation of their interactions with the emitter.
If ts = 1/∆ωS designates the time of interest of the Stark broadening mechanism (∆ωS
being the Stark width), the main contribution to the integral in Eq. (5.8)-(5.10) comes
from interactions over times smaller than ts. It results from the comparison of the
time of interest ts with the characteristic times of the interactions of the emitter with
ions (τi) and electrons (τe) respectively that we have ts >> τe near the line center and
ts << τi at angular frequencies corresponding to the line wings. This means that the
main contributions to Stark line broadening come from electrons near the line center
and from ions in the line wings. Hence generally two approximations are used: the
quasi-static approximation for the ions and the impact approximation for the electrons.
The former considers the ions as static particles during the radiation process while
the latter is a binary collisional approach. The standard model of Stark broadening
is based on these two approximations. The lineshape code PPP (Talin et al., 1997)
which used for the present calculations relies on these two approximations. The PPP
needs as an input atomic data such as energy levels, reduced matrix elements of dipole
transitions, level populations and the statistical properties of the electric microfield
e.g. the electric microfield distribtion which is either calculated by the code itself or
provided by the user. The energies can be taken from the National Institute of Standards
and Technology (NIST) (Ralchenko et al., 2010), many reduced matrix elements of
dipole transitions are missing in the NIST database and can be calculated as a square
root of the line strength (oscillator strength) which is directly related to the Einstein
coefficients (measure of the probability of occurring emission) (Koubiti et al., 2010),
level population densities are assumed to be at equilibrium. The theoretical profiles are
calculated using the EMD calculations obtained in the present work in the framework of
the Hellmann-Gurskii-Krasko pseudopotential. The atomic data were calculated using
the Cowan’s code (Cowan, 1981).

5.3 Comparison with measurements from laser-produced
plasmas

Li2+ plasma

The authors of (Lorenzen et al., 2008) used experimental data of (Schriever et al.,
1998b,a). In this experimental setup, a pulsed laser beam of a Nd:YAG laser (wavelength
λ = 1064 nm) with a maximum energy of 1300 mJ per pulse was focused on the surface
of a lithium target. Finding a spot size of 30 µm, intensities between 1010 and 1.1 · 1013

W/cm2 were realized by attenuating the laser beam at an angle of 45◦. The resulting
spectra are time and space-integrated. The emission time was measured to be as long as
the laser pulse (13 ns).
The Lyman-spectrum has been measured in (Schriever et al., 1998a) with a spectral

resolution of λ/∆λI = 300. A laser intensity of IL = 1.1 · 1013 W/cm2 was used to
generate the plasma. The high intensity leads to an electron temperature of kBTe > 100
eV. Within the assumption of complete local thermodynamic equilibrium (LTE), the
Li2+-fraction reduces to less than 0.1% at these tempeartures. In comparison, the
authors apply a linear rescaling of the wavelength axis by 1.1% centered at 13.5 nm,
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5 Comparison of EMDs with the experimental optic Li2+ and Li+ data

thus shifting the measured Lβ and Lγ to their unperturbed positions. According to the
authors (Lorenzen et al., 2008) assumption of LTE is justified by the optical plasma
thickness.
To generate the full synthetic Lyman spectrum from Eq. (5.1) - (5.7) (and Refs.) we

need an ionic electric microfield distribution function as one of the main inputs entering
the equation (5.1). Having known the plasma density and temperature we can easily
determine it using C. A. Iglesias method for ionic Li2+ OCP plasma in a framework
of the Hellmann-Gurskii-Krasko pseudopotential model (Iglesias, 1983; Sadykova et al.,
2009a) using the equations (2.42), (2.43) and (2.38) described in Sec. 2.2. The authors of
(Lorenzen et al., 2008) used the relative intensities of Lβ to Lγ to deduce the temperature
which is evaluated to T = 3 · 105 K. The electron density was fitted to the line width
of Lγ as shown in Fig. 5.1 a. Here, an electron density 4 · 1025 m−3 gave the best fit.
Comparison of a synthetic Li2+ - Lyman spectrum at T = 300 000 K and ne = 4 · 1025

m−3 in (Lorenzen et al., 2008) with experimental data (Schriever et al., 1998a) has
shown that the EMD, as an input value of the pressure broadened profile, obtained
in (Lorenzen et al., 2008) provides a good agreement with the experiment as shown in
Fig. 5.1 a. In Fig. 5.2 comparison among the EMDs obtained in the present work on a
base of C. A. Iglesias method, Molecular Dynamics with HGK micro-pseudopotential
and the EMD curve obtained in (Lorenzen et al., 2008) is presented (Lorenzen et al.,
2009). As one can easily see in Fig. 5.2, the curves coincide within the high accuracy
demonstrating the validity of the EMD theoretical approach and good accuracy of EMD
calculations. By adjusting the plasma layer of thickness the correct ratio between Lα-
and Lγ- peak values can be obtained. Fig.5.1 b shows the full spectrum using a plasma
layer of thickness 180 µm. For comparison, the spectrum without the self absorption is
given too. However, there are clear discrepancies when comparing the line wings. The
authors assume that improvements to the microfields and account of strong collisions
seem not to overcome this shortcoming and it appears to be connected to the transient
nature of laser produced plasmas. In opposite, the presented approach considers mean
values for temperatures and density. Adding the line emission of an estimated earlier
stage of the plasma, with ne = 2 · 1027 m−3 and l = 2µm, and assuming that these
conditions prevail only 0.1% of the time, the line wings can be synthezised, too. This is
also shown in Fig. 5.1 b.

Li+ plasma

In the experimental apparatus by Doria et al. (Doria et al., 2006) a Q− switched Nd:YAG
laser (λ = 1064 nm, pulse duration 15 ns and 10 Hz repetition rate) was focused onto
a pure Li target surface placed inside a vacuum chamber (5 · 10−5 mbar) generating a
plasma that expands normal to the target surface. The laser irradiance was kept constant
at an average of 1.3 · 1010 W· cm−2. The authors obtained spatially and temporally
resolved laser plasma spectra with an instrumental resolution λ/∆λI ≈ 2000÷ 2500.
The spectrum of our interest was recorded at a time delay of 60 ns from plasma
breakdown. The authors report precise spatial electron temperature distribution, density
distribution and population ratio between atoms and ions measurements for different
times during the plasma plume expansion. Plasma parameters such as the electron
density and temperature as well as the plume velocity were deduced from spectroscopic
measurements. Under the assumption of LTE, the electron temperature and its spatial
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Figure 5.1: Comparison of a synthetic Li2+ -Lyman spectrum with the experimental data at
T = 300 000 K and ne = 4 · 1025 m−3 with the instrumental resolution λ/∆λI = 300:
a) the line width is reproduced best with an electron density of ne = 4 · 1025 m−3;
b) with and without the radiative transport through l = 180µm, respectively. The
blue line corresponds to a spectrum synthesized from two plasma regions.
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Figure 5.2: Comparison among the electric microfield distributions obtained in the present work
(theory and MD) and by (Lorenzen et al., 2009) of Li2+ plasma at T = 300 000 K
and ne = 4 · 1025 m−3, ionic coupling parameter Γii = 0.097 (Lorenzen et al., 2008).
Note that in (Lorenzen et al., 2008) the EMD was scaled: P (β) · 2 and β/2.

distribution in the plasma were obtained from relative line intensity measurements.
For that purpose, two Li II lines were used: 2p 3P2,1,0 → 2s 3S1 (λ = 548 nm) and
4f 3F4,3,2 → 3d 3P3,2,1 (λ = 467 nm). The Stark broadening of the Li II 548 nm line
was used to obtain the electron density. From the measured Li II 548 nm spectra, it
was possible to obtain the spatial distribution of the electron density along the plasma
plume expansion direction.
To generate the synthetic Li II 548 nm line profile from (5.11) M. Koubiti has used

an ionic electric microfield distribution as one of inputs entering the expression for the
line profile which was determined in the present work in the framework of the HGK
pseudopotential model (Koubiti et al., 2011). Having known the plasma density and
temperature we can easily determine it using C. A. Iglesias method for ionic OCP Li+

plasma in the framework of the Hellmann-Gurskii-Krasko pseudopotential model (Iglesias,
1983; Sadykova et al., 2009a) using the equations (2.42), (2.43) and (2.38) described
in Sec. 2.2. The calculations were obtained for equal ion and electron temperatures
Ti = Te = 3.32 eV (T = 38 527 K), the latter being obtained using the Li II line intensity
ratio technique as mentioned above. Profiles of the Li II 548 nm line were calculated
for Ti = Te = 3.32 eV and different electron densities ne. A good agreement was found
for ne = 0.22× 1024 m−3. The results of calculations shown in the figure 5.3 have been
compared with experimental spectra taken from the experiment carried out at the Dublin
City University (Doria et al., 2006). Many broadening mechanisms affect the Li II 548
nm line: Stark effect, Doppler effect and the instrumental function which is a Gaussian
with a full width at half maximum FWHM of 0.22 nm. Therefore the measured profiles
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5.3 Comparison with measurements from laser-produced plasmas

are the convolution of a Gaussian (Doppler and instrumental function) and generally a
Lorentzian profile (Stark broadening) as shown in Fig. 5.3. Comparison of a synthetic
Li+ (Li II 548 nm) line profile at T = 3.32 eV K and ne = 0.22 · 1024 m−3 (Koubiti et al.,
2011) with the experimental data (Doria et al., 2006) has shown that the EMD, as one
of input values of the line profile, obtained by M. Koubiti, provides a good agreement
with the experiment as shown in Fig. 5.3. In Fig. 5.4 the EMD obtained in the present
work on a base of C. A. Iglesias method for ionic Li2+ OCP plasma within the HGK
pseudopotential model is presented in comparison with MD and Holtsmark distribution.
MD data have been obtained by H. B. Nersisyan using the regularized Coulomb potential
(Nersisyan et al., 2005) at the same plasma parameters. The curves are found in a good.
agreement with each other.
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Figure 5.3: Comparison of a synthetic Li II 548 nm line obtained by M. Koubiti (Koubiti
et al., 2011) with the experimental data (Doria et al., 2006) at T = 38 527 K and
ne = 0.22 · 1024 m−3 with a FWHM of 0.22 nm. The line width is reproduced best
with an electron density of ne = 0.22 · 1024 m−3.

99



5 Comparison of EMDs with the experimental optic Li2+ and Li+ data

0 1 2 3 4 5 6 7 8
0,0

0,1

0,2

0,3

0,4

P(
)

MD
Theory
Holtsmark

Figure 5.4: The electric microfield distribution obtained in the present work for Li+ plasma
at T = 38 527 K and ne = 0.22 · 1024 m−3 in comparison with MD obtained by
Nersisyan and Holtsmark distribution, ionic coupling parameter Γii = 0.042.
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6 Static and dynamic structure factors with
an account of the ion shell structure for
high-temperature alkali and alkaline
earth plasmas

As one of possible applications of our new screened Hellmann-Gurskii-Krasko pseudopo-
tentials we see the structure factors because for determination of the static and dynamic
structure factors one needs to have a screened pseudopotential as an essential input value.
The structure properties of Alkali and earth-alkali plasmas are of basic interest and of
importance for high-temperature technical applications. For instance, X-ray scattering
experiments have proven to be a powerful technique in measuring densities, temperatures
and charge states. The structure factor is the fundamental quantity that describes the
plasma X-ray scattering cross-section.

6.1 Static structure factors
6.1.1 Thermal equilibrium plasmas
The partial static structure factors of the system are defined as the equilibrium (equal-
time) correlation functions of the Fourier components of the microscopic partial charge
densities (Hansen and McDonald, 1981; Hansen et al., 1974):

Srs(k) =
1
N
< ρr(~k)ρs(−~k) >, (6.1)

where N number of ions and

ρr(~k) =
N∑
i=1

exp (ı~k · ~rri ). (6.2)

A linear combination of the partial structure factors which is of high importance, is the
charge-charge structure factor defined as

Szz(k) =
1

Ne + zNi
< ρz(~k)ρz(−~k) >

=
See(k)− 2

√
zSei(k) + zSii(k)

2 , (6.3)

where z is the ion charge and ρz = ρi(~k)− ρe(~k).
We calculate the screened HGK interaction pseudopotentials described above using the

semiclassical approach suggested in (Arkhipov et al., 2000). In difference to (Arkhipov
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et al., 2000), our approach is based on the HGK pseudopotential model for the interaction
between the particles (charged spheres) to account for ion shell structure. Quantum
diffraction effects i.e., the Pauli exclusion principle and symmetry, are represented in the
electron-electron interactions by the thermal de Broglie wavelength λee = h̄/

√
πmekBT .

The partial static structure factors Srs(k) (r, s = e (electrons) or i (ions)) are defined as
the Fourier transform of the pair distribution functions hrs(r) = grs(r)− 1 (Arkhipov
and Davletov, 1998):

Srs(k) = δrs −
√
nrns
kBT

Φrs(k), (6.4)

where for for Φrs the expression (4.15-4.18) are used.
The effective response of the medium is described by the charge-charge correlation

function Szz. Gregori et al. used the following definition (Gregori et al., 2007):

SGzz(k) =
See(k)− 2

√
zSei(k) + zSii(k)

1 + z
(6.5)

In Figures 6.1 (a) - (d) we compare our results on the charge-charge SSF (6.3) us-
ing (6.4) for alkali plasmas within the screened HGK pseudopotential model with the
corresponding results obtained for alkali (hydrogen-like point charges (HLPC)) plasmas
found within the screened Deutsch model for various values of density and temperature
(Sadykova et al., 2011b). All curves obtained within the screened Deutsch model converge
to each other due to the negligible influence of the alkali ion mass on the wavelength
scale λrs = h̄/

√
2πµ′rskBT with µ′rs = mrms

mr+ms
being the reduced mass of the interacting

pair r− s in (Arkhipov et al., 2000). The growth of coupling makes the peaks more pro-
nounced and the difference among the curves becomes significant. We see that moderate
coupling and the onset of short-range order manifest themselves in Szz as a first localized
peak, shown in an amplified scale, for different values of k′ for every alkali species; as the
number of shell electrons increase (from Li+ to Cs+), the position of the peaks shifts in
the direction of smaller values of k′. This phenomenon was also reported in (Gregori et al.,
2007). Strictly speaking, our approach is valid only for weakly and moderately coupled
plasmas with Γii . 1. The results we present here for Γii > 1 have to be considered
as extrapolations to a region where the Bogoljubov expansions should include more terms.

6.1.2 Static structure factors for two temperature plasmas

While for solid density plasmas, obtained with the help of laser-solid density Be or Li
interactions, at relatively high temperatures, the condition of LTE is closely approached
due to the fast relaxation between ions and electrons, at lower temperatures it is
complicated by quantum effects (e.g. degeneracy). The fluctuation-dissipation theorem
for solid density plasmas at lower temperatures , as observed by Gregori et al. in (Gregori
et al., 2006b), may still be a valid approximation even under nonequilibrium conditions
if the temperature relaxation is slow compared to the electron density fluctuation
time scale and temperatures are treated in a special way. A common condition in
experimental plasmas for this to occur is when mi >> me so that the coupling between
the two-components takes place at sufficiently low frequencies. Using a two-component
hypernetted-chain (HNC) approximation scheme, Seuferling et al. (Seuferling et al., 1989)
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Figure 6.1: The charge-charge static structure factors Szz (6.3) for alkali plasmas (Li+, Na+,
K+, Rb+, Cs+) within the HGK pseudopotential model as compared to our results
obtained in the present work for hydrogen-like plasmas within the Deutsch model
on a basis of Gregori et al.(Gregori et al., 2006b) at Te = Ti = T ′e = T ′i . (a)
Te = 60000 K, Γee = 0.398, Γii = 0.399; (b) Te = 30000 K, Γee = 0.789, Γii = 0.8;
(c) Te = 30000 K, Γee = 1.14, Γii = 1.2; (d) Te = 30000 K, Γee = 1.58, Γii = 2. As
scale of the k-vector we use the inverse electron Debye radius kDe (Sadykova et al.,
2011b).
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have shown in this case that the static response under the conditions of the non-LTE
(two-temperature) takes the form:

Srs(k) = δrs −
√
nrns

kBT ′rs
Φrs(k)− δerδes(

T ′e
T ′i
− 1) |q(k)|

2

z
Sii(k) (6.6)

where q(k)

q(k) =

√
zSei(k)

Sii(k)
, (6.7)

and for Φrs the expressions (4.15-4.19) were used. In order to take into account the
quantum plasma effects Gregori et al. suggested to introduce the so called effective ion and
electron of Dharma-wardana et al. (Dharma-Wardana and Perrot, 2000) temperatures
independently. Definition of the effective temperature T ′rs is given by,

T ′rs =
mrT

′
s +msT

′
r

mr +ms
,

allows to extend the fluctuation-dissipation theorem to nonequilibrium (two-temperature)
systems and to interpolate between the classical and quantum regimes; in two-tempera-
ture systems the de Broglie wavelength becomes λrs = h̄/

√
2πµ′rskBT ′rs.

Here T ′e = (T 2
e + T 2

q )
1/2 with Tq = TF/(1.3251− 0.1779√rs), where rs = ra/rB

is the Brueckner parameter, TF = h̄2(3π2ne)2/3/(2kBme) and T ′i = (T 2
i + γ0T

2
D)

1/2,
TD = Ωpi h̄/kB, γ0 = 0.152 is the Bohm-Staver definition for the Debye temper-
ature with Ω2

pi = ω2
pi/(1 + kDe/k2), ωpi =

√
ze2ne/(ε0mi), mi is the ion mass,

kDe =
√
e2ne/(ε0kBT ′e) is the electronic Debye wavenumber (TD ≈ 0.16eV , TF ≈ 14.5eV

for Be2+). The main objective of introduction of such quantum temperatures Tq de-
pending on the density rs by Dharma-wardana et al. (Dharma-Wardana and Perrot,
2000) was to construct a classical Coulomb fluid at some temperatures T ′e such that its
correlation energy and spin-dependent distribution functions are those of a quantum
electron gas at a given temperature Te → 0. This approach proved to reproduce finite
temperature static properties, e.g. correlation function, of an electron fluid for arbitrary
degeneracy (Dharma-Wardana and Perrot, 2000). Similarly, the ion effective temperature
T ′i was introduced by Gregori et al. which accounts for ion degeneracy (i.e. phonon
coupling) al low temperatures (Gregori et al., 2006b). Since, in the Debye model, the
phonon modes with wavelengths up to a fraction of the lattice spacing are considered,
in (Gregori et al., 2006b) it is set k ≡ kmax = (2/z)1/3kF with kF = (3π2ne)1/3 being
the Fermi wavenumber. Due to the large mass difference between ions and electrons,
T ′ei = T ′ee. All the parameters considered here are beyond the degeneration border
(neλ3

ee < 1).

Notice that when T ′e = T ′i = Te = Ti the equation (6.6) turns into the eq. (6.4) in
(Arkhipov and Davletov, 1998). The factor q(k) represents the screening cloud of free (and
valence) electrons that surround the ion. Since the equation (6.6) corresponds the HNC-
approximation, we will use this approximation to treat two-temperature and stronger
(moderately) coupled plasmas and to carry out the comparison with the corresponding
results of Gregori et al. (Gregori et al., 2006b), (Gregori et al., 2007).
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6.2 The dynamic structure factor: the moment approach

In Figures 6.2 (a), (b), (c), (d) the static structure factors Srs(k) and the screening
charge q(k) are shown for a beryllium plasma for different temperatures Ti = Te,
Ti = 0.5 · Te, Ti = 0.2 · Te and the coupling parameters Γee = e2/(4πε0kBT

′
eree),

Γii = z2e2/(4πε0kBT
′
irii) with rii = (3/4πni)1/3, ree = (3/4πne)1/3 are shown. For

the conditions typical for laser plasma experiments with solid density beryllium, we have
ne ≈ 2.5 · 1023 cm−3 and z ≈ 2. This gives TF ≈ 14.5eV and TD ≈ 0.17eV . In Fig. 6.2
(c), a minimum arises which defines the size of the ion core. Notice that this minimum
becomes less pronounced when the coupling increases.

It is of high interest to study the influence of the ion shell structure on the static
structure factors. For this reason in Figures 6.2 (a)-(d) and further we compare the
SSF, screening charge obtained from equations (6.6) and (6.7) with the screened HGK
pseudopotentials (4.15-4.18) and the corresponding SSF obtained using the screened
Deutsch pseudopotential (Arkhipov et al., 2000). In the Figure 6.2 (d) the screening
charge q(k) becomes at some k negative and the minimum arises which is due to character
of the screened electron-ion interaction.

In Fig. 6.3 the static charge-charge structure factor (6.5) for a beryllium plasma with
ne ≈ 2.5 · 1023 cm−3, z ≈ 2, Te = 20eV and Ti = Te, Ti = 0.5 · Te, Ti = 0.2 · Te is
displayed.

6.2 The dynamic structure factor: the moment approach

In this section we carry out a preliminary study of the charge-charge dynamic structure
factor of model plasmas whose static characteristics were determined above. To this
end we employ the method of moments suggested in (Adamyan and Tkachenko, 1983;
Adamyan et al., 1985) and whose applicability to the investigation of the dynamic
properties of one- and two-component plasmas is demonstrated in (Arkhipov et al.,
2010) and references therein, particularly by a successful comparison with the numerical
simulation data of (Hansen and McDonald, 1981; Hansen et al., 1974).
In this section we consider plasmas in a complete thermal equilibrium. Besides, the

HLPC potential model, except the static characteristics determined within the HGK
pseudopotential model, is applied to determine the moments or the sum rules. Let

ρr(~k, t) =
N∑
i=1

exp (ı~k · ~rri (t)). (6.8)

be the Fourier transform of the time dependent microscopic density of species r (Ebeling
and Ortner, 1998; Ortner et al., 1997). The corresponding partial dynamic structure
factors are the Fourier transforms of the density-density time correlation functions given
by

Srs(k,ω) = 1
2πN

∫
eıωt < ρr(~k, t)ρs(−~k, 0) > dt. (6.9)

The charge-charge dynamic structure factor Szz(k,ω) is defined via the fluctuation-
dissipation theorem (FDT) (Adamjan et al., 1993; Adamyan and Tkachenko, 2003) as

Szz(k,ω) = − h̄ Im ε−1(k,ω)
πΦ(k)[1− exp (−β h̄ω)]

, (6.10)
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Figure 6.2: Static structure factors and the screening charge q(k′) for Be2+ plasma at Te = 20
eV, T ′e = 24.06 eV, z = 2 and ne = 2.5× 1023 cm−3. The filled symbols represent
the screened Deutsch pseudopotential model obtained by Gregori et al. (Gregori
et al., 2006b), (Gregori et al., 2007), while the empty symbols correspond to the
screened HGK pseudopotential model. Squares: Ti/Te = 1 (Γii = 2.31, Γee = 0.61).
Circles: Ti/Te = 0.5 (Γii = 4.63, Γee = 0.61). Triangles: Ti/Te = 0.2 (Γii = 11.57,
Γee = 0.61) (Sadykova et al., 2011b).
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Figure 6.3: The charge-charge static structure factors Szz (6.5) for a beryllium plasma with
ne ≈ 2.5 · 1023 cm−3, z ≈ 2, and Te = 20 eV, T ′e = 24.06 eV. The filled symbols
represent the screened Deutsch pseudopotential model obtained on the basis of
(Gregori et al., 2007) , while the empty symbols correspond to the screened HGK
pseudopotential model. Squares: Ti/Te = 1 (Γii = 2.31, Γee = 0.61). Circles:
Ti/Te = 0.5 (Γii = 4.63, Γee = 0.61). Triangles: Ti/Te = 0.2 (Γii = 11.57,
Γee = 0.61) (Sadykova et al., 2011b).

where Φ(k) = e2/ε0k
2 and ε−1(k,ω) is the inverse longitudinal dielectric function of

the plasma. The charge-charge dynamic structure factor is directly related to the charge-
charge static structure factor as follows :

Szz(k) =
1

ne + zni

∫ ∞
−∞

Szz(k,ω)dω

=
See(k)− 2

√
zSei(k) + zSii(k)

2 , (6.11)

where T ′e = T ′i = Te = Ti, T ′ei = T ′ee = T ′e, ne = zni (z = 1 for hydrogen-like plasmas).
In order to construct the inverse longitudinal dielectric function within the moment ap-

proach one has to consider the frequency moments of the loss function − Im ε−1(k,ω)/ω:

Cν(k) = −π−1
∫ ∞
−∞

ων−1 Im ε−1(k,ω)dω, (6.12)

here with ν = 0, 2, 4. Observe that the odd-number moments vanish due to the parity of
the loss function and that the moment C2 = ω2

p expresses the f -sum rule, ωp being the
plasma frequency.

Then the Nevanlinna formula of the classical theory of moments (Akhieser, 1965; Krein
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and Nudel’man, 1977) expresses the response function

ε−1(k,ω) = 1 + ωp
2(ω+ q)

ω(ω2 − ω22) + q(ω2 − ω12)
, (6.13)

in terms of a Nevanlinna-class q = q(k,ω) such that

lim
z→∞

q (k, z)
z

= 0 , Im z ≥ 0.

The frequencies ω1 and ω2 are defined as respective ratios of the moments Cν :

ω1
2 = C2/C0 = ωp

2[1− ε−1(k, 0)]−1,
ω2

2 = C4/C2 = ωp
2[1 +Q(k)], (6.14)

where ε−1(k, 0) can be determined from the classical form ( h̄→ 0) of the FDT (thermal
equillibrium) eq. (6.10) and the Kramers-Kronig relation (Landau and Lifschitz, 2000):

Re ε−1(k,ω) = 1 + 1
π
P .V .

∫ ∞
−∞

Im ε−1(k,ω)
ω′ − ω

dω′ (6.15)

In this way, we get the following expression :

Re ε−1(k, 0) = 1− 2Szz(k)
kDe

2

k2 , (6.16)

where Re ε−1(k, 0) = ε−1(k, 0) = ε−1(k), Szz(k) is defined by (6.11). The function
defining the fourth moment is given in the Coulomb HLPC approximation except the
static characteristics, given within the HGK pseudopotential model, by (Adamjan et al.,
1993; Adamyan and Tkachenko, 2003):

Q(k) = K(k) + L(k) +H. (6.17)

It contains the kinetic contribution, particularly, for a classical system:

K(k) = 3
(
k

kD

)2
, (6.18)

where kD2 = kDe
2.

We approximate here the contribution due to the electron-ion correlations by the
expression obtained in (Corbatón and Tkachenko, 2008; Adamyan et al., 2009) for
hydrogen within the modified RPA:

H =
4
3rs
√

Γee[3Γ2
ee + 4rs + 4Γee

√
6rs]−1/2 (6.19)

Finally, the contribution L(k) takes into account the electronic correlations, we
calculated it for the Coulomb potential:

L(k) =
1

2π2ne

∫ ∞
0

p2[See(p)− 1]f(p, k)dp, (6.20)
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where

f (p, k) = 5
12 −

p2

4k2 +

(
k2 − p2)2

8pk3 ln
∣∣∣∣p+ k

p− k

∣∣∣∣ . (6.21)

In (6.20) the static structure factor is the one defined in (6.6) with the pseudopotentials
given in (4.15-4.18).
The authors of (Adamjan et al., 1993; Adamyan and Tkachenko, 2003) suggested to
approximate q(k,ω) by its static value q(k, 0) = ıh(k), connected to the static value
Szz(k, 0) of the dynamic structure factor through eq. (6.10):

h(k) =
(ω2

2 − ω1
2)ωp2

πβφ(k)ω14Szz(k, 0) > 0, (6.22)

with
Szz(k, 0) ' S0

zz(k, 0), (6.23)

where S0
zz(k, 0) = ne

k

√
m

2πkBT (Ichimaru, 1992) so that the relative dynamic structure
factor takes the following form:

Szz(k,ω)
Szz(k, 0) =

β h̄

[1− exp (−β h̄ω)]

× ωh2(k)ω1
4

ω2(ω2 − ω22) + h2(k)(ω2 − ω12)
, (6.24)

with the more simplified expressions for h(k):

h(k) =
ε0
√

2πkBTk3ωp
2(ω2

2 − ω1
2)

πβ
√
mnee2ω14 , (6.25)

and the characteristic frequencies ω1(k), ω2(k):

ω1
2 = C2/C0 =

ωp
2k2

2kDe2Szz(k)
,

ω2
2 = C4/C2 = ωp

2[1 +K(k) + L(k) +H ]. (6.26)

In Figures 6.4 and 6.5 we present our results for the DSF at a moderate temperature
T = 30000 K and for the concentrations ne = 1.741 · 1020 − 1022 cm−3 (Sadykova, 2010),
i. e. for the values of Γee used in (Adamjan et al., 1993; Adamyan and Tkachenko,
2003). As one can see in Figures 6.4, 6.5, the curves for alkali plasmas are different
from those given for the HLPC potential model with the Coulomb static characteristics
(Adamjan et al., 1993; Adamyan and Tkachenko, 2003). The differences are due to the
repulsive parts of the HGK pseudopotential which reflects roughly the internal ion shell
structure. In alkali plasmas the ion shell structure influences the dynamic structure
factor through the sum rules which we satisfy automatically, independently of the choice
of the Nevanlinna parameter function q (k,ω). In the Figures, in alkali plasmas the
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position, heights of the central peaks coincides, except the Fig. 6.4b, with those of the
Coulomb potential HLPC potential model, while the positions of the plasmon peaks are
slightly shifted. Notice, in alkali plasmas at higher Γee the curves split and the plasmon
peaks are more pronounced. We observe that the curves shift in the direction of lower
values of k compared to the corresponding results of (Adamjan et al., 1993; Adamyan
and Tkachenko, 2003). In Fig. 6.4 (b) the curves split into three very sharp peaks.
This could be explained by some coupling between bound electrons and the plasmon
mode. In Fig. 6.5 the position of the plasmon peaks shift in the direction of higher
absolute value of ω, as compared to those in Fig. 6.4. Observe that as the number of
shell electrons increases from Li+ to Cs+, the curves shift in the direction of low absolute
value of ω/ωp and their heights diminish. The difference is due to the short range forces
which we take into account within the HGK pseudopotential model compared to the
HLPC pseudopotential model. One should also take into account that we employed
different plasma parameters because at the high densities and temperatures studied in
(Adamjan et al., 1993; Adamyan and Tkachenko, 2003) the inner electron shells of the
alkali plasmas are destroyed.

6.2.1 Taking into account the ion shell structure

In the framework of the Adamyan’s et al. HLPC potential model (Adamjan et al., 1993;
Adamyan and Tkachenko, 2003) one can include the ion shell structure through the
function defining the fourth moment:

QHGK(k) = K(k) + LHGK(k) +HHGK . (6.27)

Here, the kinetic distribution is taken the same as in (6.18). We approximate here the
contribution due to the electron-ion HGK correlations by the following expression:

HHGK =
hei(r = 0)

3 =
gei(r = 0)− 1

3 ' −1
3. (6.28)

Within the screened HGK pseudopotential model, the HHGK in eq. (6.28) can be
approximated by −1/3 because we consider the ion shell structure, that means that the
electron cannot approach the ion at r = 0 distance. Note that gei(r = 0) = 0 is not
exactly true, it is just a good approximation.

The contribution LHGK(k) takes into account the electronic correlations, we calculated
it for the HGK pseudopotential:

LHGK(k) =
1

2π2ne

∫ ∞
0

p2[See(p)− 1]fHGK(p, k)dp, (6.29)

where

fHGK(p, k) =
∫ 1

−1

(ps− k)2

p2 − 2psk+ k2 ζee(
√
p2 − 2pks+ k2)

ds

2 −
ζee(p)

3 (6.30)

where ζee(p) is to be determined from the Deutsch pseudopotential ϕee(p) = Φ(p)ζee(p),
where Φ(p) = 4πe2/4πε0p

2 - Fourier transform of the Coulomb potential.
In (6.29) the static structure factor is the one defined in (6.6) with the pseudopotentials
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Figure 6.4: The dimensionless dynamic charge-charge structure factor of alkali plasmas (Li+,
Na+, K+, Rb+, Cs+) determined within the HLPC potential model but with the
HGK static characteristics in comparison with the results of (Adamjan et al., 1993)
obtained within the same HLPC potential model but with the Coulomb static
characteristics at k = 0.767/ree, (a) Γii = 0.5, Present results: T = 30000 K,
ne = 1.741 · 1020 cm−3, Adamjan et al.: T = 1574573 K, ne = 2.5 · 1025 cm−3 and
(b) Γii = 2, Present results: T = 30000 K, ne = 1.11 · 1022 cm−3, Adamjan et al.:
T = 157457 K, ne = 1.61 · 1024 cm−3. As the frequency scale we use the electron
plasma frequency ωp =

√
nee2/ε0me (Sadykova et al., 2011b).
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Figure 6.5: The dimensionless dynamic charge-charge structure factor of alkali plasmas (Li+,
Na+, K+, Rb+, Cs+) determined within the HLPC potential model but with the
HGK static characteristics in comparison with the results of (Adamjan et al., 1993)
obtained within the same HLPC potential model but with the Coulomb static
characteristics at k = 1.534/ree, (a) Γii = 0.5, Present results: T = 30000 K,
ne = 1.741 · 1020 cm−3, Adamjan et al.: T = 1574573 K, ne = 2.5 · 1025 cm−3 and
(b) Γii = 2, Present results: T = 30000 K, ne = 1.11 · 1022 cm−3, Adamjan et al.:
T = 157457 K, ne = 1.61 · 1024 cm−3. As the frequency scale we use the electron
plasma frequency ωp =

√
nee2/ε0me (Sadykova et al., 2011b).

112



6.3 Conclusions

given in (4.15-4.18).
The equations (6.22-6.25) and ω1

2 in the equation (6.26) remain the same. But the
ω2

2 will turn into :

ω2
2 = C4/C2 = ωp

2[1 +K(k) + LHGK(k) +HHGK ]. (6.31)

In Figures 6.6 and 6.7 the DSF with the different definitions of H, L in the Eq. (6.19)
with (6.20), (6.21) and HHGK , LHGK in the Eqs. (6.28), (6.29) with (6.30) respectively,
are shown for comparison with the HLPC potential model in (Adamjan et al., 1993). As
one can see in the Figures the curves for alkali plasmas are different from those given for
the HLPC potential model (Adamjan et al., 1993) as well as they are in comparison with
each other. The differences are again due to the repulsive parts of the HGK potential,
compared to the HLPC potential model, which reflects roughly the internal ion shell
structure. In the case of alkali plasmas at higher Γii the curves split. This can be
explained by that fact that at higher Γii alkali ion shell structure influences the dynamic
structure factor significantly. In the Figures 6.6 (a) and 6.7 (a) the position and heights
of the central peaks coincides but positions of the plasmon peaks are slightly shifted . In
alkali plasmas the plasmon peaks are more pronounced especially in the Fig. 6.7 (a),
(b) where the ion shell structure is better taken into account through HHGK , LHGK .
We observe that the plasmon peaks in the Fig. 6.7 (a), (b) are more pronounced and
shifted in the direction of smaller absolute value of ω/ωp, the heights of the plasmon
peaks are higher especially at higher Γii than in the Fig. 6.6 (a), (b). All this could be
explained by some coupling between bound electrons and the plasmon mode. Observe
that at higher Γii with an increase of number of shell electrons from Li+ to Cs+ the
curves shift in the direction of low absolute value of ω/ωp and their heights diminish.
The difference is due to the short range forces which we took into account by the HGK
pseudopotential model in comparison with the HLPC potential model. One should also
take into account that we employed different plasma parameters because at the high
densities and temperatures studied in (Adamjan et al., 1993) inner electron shells of the
alkali plasmas are destroyed.

6.3 Conclusions
X-ray scattering experiments has proven to be a powerful technique in measuring
densities, temperatures and charge states. The structure factor (SF) is the fundamental
quantity that describes the X-ray scattering plasma cross-section. To date, there is still
a substantial amount of discrepancy between X-ray scattering data and the theoretical
models for the quasi-static scattering component. This motivates this our study of static
and dynamic properties of metal plasmas.
The electron-electron, electron-ion, ion-ion and charge-charge static structure factors

have been calculated for alkali and Be2+ plasmas using the method described and
discussed by Gregori et al. . The dynamic structure factors for alkali plasmas have been
calculated using the moment approach developed by V. M. Adamyan et al. . The new
screened Hellmann-Gurskii-Krasko pseudopotential with the soft ion core, obtained in
the present work on the basis of Bogoljubov’s method (BBGKY), has been used taking
into account not only the quantum-mechanical effects but also the ion shell structure.
The results obtained within the screened HGK pseudopotential model for the static

113



6 SSFs and DSFs with an account of the ion shell structure for high-temperature alkali ...

-3 -2 -1 0 1 2 3
0,0

0,2

0,4

0,6

0,8

1,0

1,2

S z
z(k

,
)/S

zz
(k
,0
)

p

K+

HLPC

Na+

Cs+

Li+

Rb+

a)

-2 -1 0 1 2
0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

S z
z(k

,
)/S

zz
(k
,0
)

p

-1,55 -1,60 -1,65 -1,70 -1,75
0,00

0,02

0,04

0,06

0,08

0,10

0,12

1,55 1,60 1,65 1,70
0,0

0,2

0,4

0,6

0,8

1,0

1,2

K+

HLPC

Na+

Cs+

Li+

Rb+

b)

Figure 6.6: The dimensionless dynamic charge-charge structure factor of alkali plasmas (Li+,
Na+, K+, Rb+, Cs+) determined within the HLPC potential model but with the
HGK static characteristics in comparison with the results of (Adamjan et al., 1993)
obtained within the same HLPC potential model but with the Coulomb static
characteristics at k = 1.074 · ree. (a) Γii = 0.5, Present results: T = 30000 K,
ne = 1.741 · 1020 cm−3, Adamjan et al.: T = 1574573 K, ne = 2.5 · 1025 cm−3

and (b) Γii = 2, Present results: T = 30000 K, ne = 1.11 · 1022 cm−3, Adamjan
et al.: T = 157457 K, ne = 1.61 · 1024 cm−3, where the H, L are defined as
(6.19) and (6.20), (6.21). As the length scale we use the electron plasma frequency
ωp = nee

2/ε0me (Sadykova, 2010).
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Figure 6.7: The dimensionless dynamic charge-charge structure factor of alkali plasmas (Li+,
Na+, K+, Rb+, Cs+) determined within the HGK pseudopotential model with the
HGK static characteristics in comparison with the results of (Adamjan et al., 1993)
obtained within the HLPC potential model with the Coulomb static characteristics
at k = 1.074 · ree. (a) Γii = 0.5, Present results: T = 30000 K, ne = 1.741 · 1020

cm−3, Adamjan et al.: T = 1574573 K, ne = 2.5 · 1025 cm−3 and (b) Γii = 2,
Present results: T = 30000 K, ne = 1.11 · 1022 cm−3, Adamjan et al.: T = 157457
K, ne = 1.61 · 1024 cm−3, where the HHGK , LHGK are defined as (6.28) and (6.29),
(6.30). As the length scale we use the electron plasma frequency ωp = nee

2/ε0me

(Sadykova, 2010).
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structure factors have been compared with those obtained by Gregori et al. , while the
dynamic structure factors calculated within the HLPC and HGK (pseudo-)potential
models, where the HGK pseudopotential model was considered completely within the
properties of the HGK pseudopotential (through the fourth moment of the loss function)
and the HGK static characteristics, whereas HLPC potential model was treated in a part
within the HGK pseudopotential model through the HGK static characteristics, were
compared to those of S. V. Adamjan et al. defined within the HLPC potential model
as well but with the Coulomb properties and Coulomb static characteristics. We have
detected deviations (in the values of the SSFs) from results obtained by Gregori et al.
while we have noticed that the present dynamic results are in a reasonable agreement
with those of S. V. Adamjan et al.: at higher values of k and with increasing k the curves
damp while at lower values of k, and especially at higher Γee, we observe sharp peaks
also reported by S. V. Adamjan et al. . At lower Γee the curves for Li+, Na+, K+,
Rb+ and Cs+ do not differ while at higher Γee the curves split. In alkali plasmas the
plasmon peaks are more pronounced especially at higher Γtt and shifted in the direction
of lower ω/ωp than those considered within the Coulomb HLPC potential model with
the Coulomb static characteristics. As the number of shell electrons increases from Li+

to Cs+ the curves shift in the direction of low absolute value of ω/ωp and their heights
diminish. The difference is due to the short range structure which we took into account
by the HGK pseudopotential model compared to the hydrogen-like point charges model
where no ion shell structure is considered. One should also take into account that we
employed different plasma parameters because at the high densities and temperatures
studied by S. V. Adamjan et al. the inner electron shells of the alkali plasmas are
destroyed.
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7 Summary

EMDs in electron OCP and electron-positron TCP

We have calculated the electric microfield distributions (EMDs) at an electron and
at a neutral point using a coupling-parameter integration technique for electron one-
component plasmas developed by C. A. Iglesias (Iglesias, 1983) and the generalized
coupling-parameter integration technique for electron-positron two-component plasmas
proposed by J. Ortner et al. (Ortner et al., 2000). We study the EMDs in the framework
of the Kelbg pseudopotential model, taking into account quantum-mechanical (diffraction,
quantum symmetry effects, Pauli blocking effects) and screening effects (Sadykova and
Ebeling, 2007). The screening effects were introduced on a base of Bogoljubov’s works
(Bogoljubov-Born-Green-Kirkwood-Yvon (BBGKY)) described in (Falkenhagen, 1971),
(Bogoljubov, 1946, 1962). The screened pseudopotential is represented in a numerically
approximated form.

We performed the Molecular Dynamics (MD) simulations of electron-positron TCP and
high-frequency OCP plasma and determined the EMDs measured at an electron and at
a neutral point as depending on the coupling parameter Γee in the range 0.2 ≤ Γee ≤ 1.2
at T = 30000K. We show that with an increase of Γee the most probable field shifts
toward the lower fields. The height of the peak of the corresponding probability density
in a case of EMD at an electron decreases with Γee for Γee > 0.3. The height of the
peak of the corresponding probability density in a case of EMD at a neutral point
increases monotonically with Γee. We show that at low Γee the tails of the EMDs at an
electron in OCP, TCP follow a pattern compatible with the Levy-type of distribution
(P (β) ∼ β−α−1) . The tails of the EMDs measured at a neutral point at Γee ≤ 2
follow a pattern compatible with the Holtsmark one (α = 3/2) also belonging to the
Levy-type of distribution. At higher values of Γee and higher fileds β >> 1 the tails
of EMD at an electron are considerably fatter and follow the modified Potekhin law
(P (β) = Bβµ exp(−Cβ1/2 − β−3/2) ). At values 0.2 ≤ Γee ≤ 1.2 the tails measured
at an electron in electron-positron plasma can be roughly approximated by the decay
exponents α′ = α+ 1 corresponding to the Levy-type of distribution changing from −2.2
to −1.8 with increasing Γee. The TCP curves referred to either an electron or neutral
point are less pronounced than the OCP one and their tails are fatter. This can be
explained by that fact that in TCP case two components (electron and ion) are taken
into account leading to the attraction between the opposite charges and stronger fields
in average. The results were found in a good agreement with the Molecular Dynamics
simulation results. These results can serve as a benchmark for our further theoretical
work.
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EMDs in electron-ion TCP with an account of the ion shell
structure

In order to correctly describe alkali plasmas at moderate temperatures one needs to take
into account the ion shell structure. For example, for the behaviour of alkali plasmas
the short range forces between the charged particles are of great importance (Ebeling
et al., 1979). For alkali plasmas at small distances between the particles deviations
from Coulomb law are observed which are mainly due to the influence of the core (shell)
electrons. In this work we use Hellmann-Gurskii-Krasko (HGK) pseudopotential model
for electron-ion interactions and its modified version of ion-ion interactions which take
into account the ion shell structure (Krasko and Gurskii, 1969). We have calculated
the EMDs for Hydrogen H+, singly ionized alkali plasmas (Li+,Na+,K+,Rb+,Cs+)
at the location of an ion using Ortner et al. method (Ortner et al., 2000) in comparison
with Monte-Carlo (MC), MD simulations. We study the distributions in the framework
of the HGK model. Notice also that there is a high interest in the construction of a
pseudopotential model of particle interactions in dense plasmas; this model is to take
into account not only the quantum-mechanical effects including the ion shell structure
at short distances, but also the screening field effects. Our models take into account
both the quantum-mechanical, ion shell structure and screening field effects. We used
the screened HGK pseudopotential in the Debye screening approximation as well as
in a higher order screening approximation valid also for a moderately coupled plasma,
both were derived in the present work (Sadykova et al., 2009a). In the present work the
influence of the coupling parameter along with the ion shell structure on the EMD shape
and position was investigated. With an increasing value of Γii the ion shell structure
starts to play a significant role. High density as well as the coupling parameter causes a
shifting of the maximum of probability toward the lower fields and changing the tails
this way significantly modifying the electric microfield distributions. For comparison the
corresponding EMDs for H+-plasmas were given too. In this case no ion shell exists
and we may see clearly the deviation of alkali curves from H+ one and consequently
the influence of the shell structure. For Radial Distribution Functions (RDF) of Li+,
Na+, K+, Cs+ plasmas we used the screened HGK pseudopotential in a moderately
coupled plasma approximation (Sadykova et al., 2011a). The moderately coupled plasma
approximation compared to the Debye screening approximation makes a considerable
improvement in the EMD calculation at moderate magnitudes of Γii leading to a much
better agreement with the MC simulations. However, we see a wide field of study of EMD
in a moderately and strongly coupled TCP plasmas in the framework of the screened
HGK pseudopotential model on a base of potential-of-mean-force exponential (PMFEX)
method proposed by Nersisyan et al in (Nersisyan et al., 2005). In a strongly coupled
regime the screened HGK pseudopotentials and corresponding RDFs can be determined
with the help of the hypernetted-chain (HNC) integral equation technique with the
HGK pseudopotentials as micro-pseudopotentials (Hansen and McDonald, 1990). The
theoretical results were found in general in a good agreement with MC, MD simulations.
We have derived a new type of screened HGK pseudopotential, where for electron-electron
interaction we used the corrected Kelbg micro-pseudopotential instead of earlier applied
Deutsch micro-peudopotential (Sadykova et al., 2011a). We have also obtained the
analytical expressions for the screened Deutsch pseudopotentials (Arkhipov et al., 2000)
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through the inverse Fourier transformation in “r” -space neglecting the symmetry effects
and ionic screening.
Summarizing briefly our main results:

(i) The shapes of EMDs of the alkali plasmas at moderate magnitudes of Γii are different.
We observe large differences compared to the Holtsmark distribution and to the EMD
distribution of Hydrogen plasma. This allows us to say that the ion shell structure
influences the EMD strongly;
(ii) The peaks of the EMD distributions of alkali plasmas is positioned in between the
peak of hydrogen, which is located at lower fields and the Holtsmark distribution which
is located at higher fields;
(iii) The tails of the EMDs at the location of an ion at Γii = 0.2, T = 30000K or
neutral point at any Γii are in all cases of Levy-type P (β) ∼ β−α−1 with α ' 3/2
for EMD at a neutral point. When the field is measured at an ion in alkali plasmas
at moderately high Γii = 2 the tails obey to the power-exponential Potekhin form
P (β) ∼ Bβ−5/2 exp(−Cβ1/2 − β−3/2) whereas in Hydrogen plasma it obeys to the
modified Potekhin form P (β) = Bβµ exp(−Cβ1/2 − β−3/2). The Holtsmark limit with
the exponent α = 3/2 is located in the middle, between the hydrogen plasma with
B ' 0.5, µ ' −1.06 and C ' 0.27 and relatively fast Potekhin power-exponential decay
with B ' 497, C ' 2.17 for Na+ plasma and B ' 20.8, C ' 1.68 for Cs+ plasma.
The relatively fast decay of the microfield distribution of alkali plasmas is due to the
weakening of strong fields due to the screening by the ion cores. This prevents very high
fields. We leave a detailed study of this remarkable effect to future work;
(iv) In the parameter range of weakly coupled plasmas the theory by Ortner et al. with
Debye screening gives a reasonable approximation which is in a good agreement with
MC, MD simulations.
(v) The moderately coupled plasma approximation compared to the Debye screening
approximation makes a considerable improvement in the EMD calculation at moderately
large Γii leading to a much better agreement with the MC, MD simulations.

Comparison with measurements from laser-produced plasmas

Li2+ plasma

The Li2+ Lyman-spectrum was measured in (Schriever et al., 1998a) with a spectral res-
olution of λ/∆λI = 300. A pulsed laser beam of a Nd:YAG laser (wavelength λ = 1064
nm) with a maximum energy of 1300 mJ per pulse and intensity of IL = 1.1 · 1013

W/cm2 was focused on the surface of a lithium target to generate the plasma. The high
intensity lead to an electron temperature of kBTe > 100 eV. Comparison of a synthetic
Li2+-Lyman spectrum at T = 300000 K and ne = 4 · 1025 m−3, obtained using a quantum
statistical approach in dense plasmas in (Lorenzen et al., 2008), with experimental data
(Schriever et al., 1998a) has shown that the EMD, as one of the main input values of the
pressure broadened profile, obtained in the present work provides a good agreement with
the experiment. The EMD obtained in the present work for Li2+ plasma at T = 300000
K and ne = 4 · 1025 m−3 on a base of C. A. Iglesias method for ionic Li2+ OCP within
the HGK pseudopotential model, Molecular Dynamics and the EMD curve obtained in
(Lorenzen et al., 2008) coincide within the high accuracy demonstrating the validity of the
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EMD theoretical approach and good accuracy of EMD calculations (Lorenzen et al., 2009).

Li+ plasma

The Li II spectra of Li+ plasma was measured in (Doria et al., 2006). In the experimental
apparatus by Doria et al. (Doria et al., 2006) a Q− switched Nd:YAG laser (λ = 1064
nm) was focused onto a pure Li target surface placed inside a vacuum chamber (5 · 10−5

mbar) generating a plasma that expands normal to the target surface. The laser
irradiance was kept constant at an average of 1.3 · 1010 W· cm−2. The authors obtained
spatially and temporally resolved laser plasma spectra with an instrumental resolution
λ/∆λI ≈ 2000÷ 2500. The spectrum of our interest was recorded at a time delay of 60
ns from plasma breakdown. Comparison of a synthetic Li+ (Li II 548 nm) line profile
at T = 3.32 eV K and ne = 0.22 · 1024 m−3, obtained by M. Koubiti (Koubiti et al.,
2011) using the standard theory of Stark broadening on a base of a semi-classical picture,
with the experimental data of Doria et al. has shown that the EMD, as one of input
values of the line profile, obtained in the present work provides a good agreement with
the experiment. The EMD obtained in the present work on a base of C. A. Iglesias
method for ionic Li+ OCP at T = 38 527 K and ne = 0.22 · 1024 m−3 within the HGK
pseudopotential model and MD data obtained by H. B. Nersisyan using the regularized
Coulomb potential have been found in a good agreement with each other.

Static and dynamic structure factors with an account of the
ion shell structure for high-temperature alkali and alkaline
earth plasmas

X-ray scattering experiments has proven to be a powerful technique in measuring densities,
temperatures and charge states. The structure factor is the fundamental quantity that
describes the X-ray scattering plasma cross-section. To date, there is still a substantial
amount of discrepancy between X-ray scattering data and the theoretical models for the
quasi-static scattering component. This motivates this our study of static and dynamic
properties of metal plasmas.

We have calculated the electron-electron, electron-ion, ion-ion and charge-charge static
structure factors (SSFs) for alkali and Be2+ plasmas using the method described and
discussed by G. Gregori et al. in (Gregori et al., 2006b, 2007). We have calculated
the dynamic structure factors (DSFs) for alkali plasmas using the moment approach
developed by V. M. Adamyan et al. (Adamyan and Tkachenko, 1983; Adamjan et al.,
1993; Adamyan et al., 1985). The new screened HGK pseudopotential with the soft ion
core, obtained on the basis of Bogoljubov’s method (BBGKY) in the present work, has
been used taking into account not only the quantum-mechanical effects but also the
ion shell structure (Sadykova et al., 2009a). The results obtained within the screened
HGK pseudopotential model for the SSFs have been compared with those obtained
by Gregori et al. (Gregori et al., 2006b, 2007), while the DSFs calculated within the
Hydrogen-like point charges (HLPC) and HGK (pseudo-)potential models, where the
HGK pseudopotential model was considered completely within the properties of the
HGK pseudopotential (through the fourth moment of the loss function) and the HGK
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static characteristics, whereas the HLPC potential model was treated in a part within
the HGK pseudopotential model through the HGK static characteristics, were compared
to those of S. V. Adamjan et al. defined within the HLPC model as well but with the
Coulomb properties and Coulomb static characteristics. We have detected deviations (in
the values of the SSFs) from results obtained by Gregori et al., while we have noticed
that the present DSFs are in a reasonable agreement with those of S. V. Adamjan et
al. (Adamjan et al., 1993): at higher values of k and with increasing k the curves damp
while at lower values of k, and especially at higher Γee, we observe sharp peaks also
reported in (Adamjan et al., 1993). At lower Γee the curves for Li+, Na+, K+, Rb+ and
Cs+ do not differ while at higher Γee the curves split. In alkali plasmas the plasmon
peaks are more pronounced especially at higher Γii and shifted toward the lower ω/ωp
than those considered within the Coulomb HLPC potential model with the Coulomb
static characteristics. As the number of shell electrons increases from Li+ to Cs+ the
curves shift toward the low absolute value of ω/ωp and their heights diminish. The
difference is due to the short range structure which we took into account by the HGK
pseudopotential model compared to the HLPC. One should also take into account that
we employed different plasma parameters because at the high densities and temperatures
studied in (Adamjan et al., 1993) the inner electron shells of the alkali plasmas are
destroyed.
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Appendix

The derivation of the Holtsmark distribution
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Appendix

with k∗ = kE0 where E0 = ze/(4πε0rii
2) is an average electric field.

Holtsmark distribution:

P (β) =
2β
π

∞∫
0

k∗exp(−k∗3/2 2
5
√

2π) sin(βk∗)dk∗ (2)
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The Deutsch pseudopotential without the symmetry effects
and ionic screening

Φei(k) =
ze2

ε0∆
1

k2(1 + k2λ2
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, (3)
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Here rDe is the Debye radius of electrons with 1/rDe2 = e2ne/(ε0kBT ),
b = (λee

2π ln 2)−1, A = kBT ln 2π3/2b−3/2ε0/e2 and

∆ = 1 + 1
k2rDe2(1 + k2λee

2)
. (6)

The pseudopotential Φab(r) can be restored from (3-6) by Fourier transformation

Φab(r) =
1

2π2r

∫
Φab(k)k sin(kr)dk (7)

Let us consider the limiting cases of the expressions (3-4).

A. If rDe →∞, then
Φab(r) = ϕab(r) (8)

When the screening effects are negligible, the pseudopotential Φab(r) coincides
with the potentials (3.5).

B. If λee, λei, λii → 0, then

Φab(r) =
eaeb
4πε0

e−r/rDe

r
. (9)

Eq. (9) means when quantum-mechanical effects are negligible, then the pseudopo-
tential Φab(r) coincides with the Debye-Hückel one.

C. If rDe →∞, λee, λei, λii → 0, then

Φab(r) =
eaeb

4πε0r
. (10)

When the quantum-mechanical and screening field effects are negligible, then the
pseudopotential Φab(r) coincides with the Coulomb potential.
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D. If λee,λei,λii � rDe, then for e− i and i− i

Φab(r) =
eaeb

4πε0r

[
e−r/rDe − e−r/λab

]
. (11)
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The derivation of the asymptote of the Holtsmark distribution

lim
β→∞

P (β) = lim
β→∞

2β
π

∞∫
0

k∗ exp(−k∗3/2 2
5
√

2π) sin(βk∗)dk∗

= lim
β→∞

−2β
π

∞∫
0

∂

∂β
exp(−k∗3/2 2

5
√

2π) cos(βk∗)dk∗

Taking into an account that at β →∞ =⇒ k∗ → 0, we get:

= lim
β→∞

−2β
π

∂

∂β

∞∫
0

(1− k∗3/2 2
5
√

2π) cos(βk∗)dk∗

= lim
β→∞

−2β
π

∂

∂β
(δ(β)− 2

5
√

2π
∞∫

0

k∗3/2 cos(βk∗)dk∗)

=

∣∣∣∣∣∣βk∗ = x,−2
5
√

2π ∂2

∂β2

√
β

β

∞∫
0

x−1/2 cosxdx

= −2
5
√

2π ∂2

∂β2
1√
β

Γ(1/2) cos
(
π

4

)
= −2

5
√

2πβ−5/2√π
√

2
2

3
4

∣∣∣∣∣
= lim

β→∞
−2β
π

∂

∂β
(δ(β) +

2
5
√

2πβ−5/2√π
√

2
2

3
4 )

atβ →∞ =⇒ δ(β)→ 0, then we have

=
3
2β
−5/2 (12)
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Abbreviations

Table 1: Abbreviations

Abbreviations Description

EMD(s) Electric Microfield Distribution(s)

OCP One-component plasma

TCP Two-component plasma

RDF Radial distribution function

PMF Potential-of-mean-force

MC Monte Carlo

MD Molecular Dynamics

HGK Hellmann-Gurskii-Krasko pseudopotential model

HC (HS) Hard-Core pseudopotential model (Hard spheres)

HLPC Hydrogen-like point charges model

PBC Periodic boundary conditions

BBGKY Bogoljubov-Born-Green-Kirkwood-Yvon method

SSF(s) Static structure factor(s)

DSF(s) Dynamic structure factor(s)

RPA Random-phase approximation

HNC Hypernetted-chain approximation

LTE Local thermodynamic equilibrium

APEX Adjustable-parameter approximation model
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