38 research outputs found

    Explaining pre-emptive acclimation by linking information to plant phenotype

    Get PDF
    We review mechanisms for pre-emptive acclimation in plants and propose a conceptual model linking developmental and evolutionary ecology with the acquisition of information through sensing of cues and signals. The idea is that plants acquire much of the information in the environment not from individual cues and signals but instead from their joint multivariate properties such as correlations. If molecular signalling has evolved to extract such information, the joint multivariate properties of the environment must be encoded in the genome, epigenome, and phenome. We contend that multivariate complexity explains why extrapolating from experiments done in artificial contexts into natural or agricultural systems almost never works for characters under complex environmental regulation: biased relationships among the state variables in both time and space create a mismatch between the evolutionary history reflected in the genotype and the artificial growing conditions in which the phenotype is expressed. Our model can generate testable hypotheses bridging levels of organization. We describe the model and its theoretical bases, and discuss its implications. We illustrate the hypotheses that can be derived from the model in two cases of pre-emptive acclimation based on correlations in the environment: the shade avoidance response and acclimation to drought.Peer reviewe

    Hypoxia in grape berries : the role of seed respiration and lenticels on the berry pedicel and the possible link to cell death

    Get PDF
    Mesocarp cell death (CD) during ripening is common in berries of seeded Vitis vinifera L. wine cultivars. We examined if hypoxia within berries is linked to CD. The internal oxygen concentration ([O 2 ]) across the mesocarp was measured in berries from Chardonnay and Shiraz, both seeded, and Ruby Seedless, using an oxygen micro-sensor. Steep [O 2 ] gradients were observed across the skin and [O 2 ] decreased toward the middle of the mesocarp. As ripening progressed, the minimum [O 2 ] approached zero in the seeded cultivars and correlated to the profile of CD across the mesocarp. Seed respiration declined during ripening, from a large proportion of total berry respiration early to negligible at later stages. [O 2 ] increased towards the central axis corresponding to the presence of air spaces visualized using X-ray micro-computed tomography (CT). These air spaces connect to the pedicel where lenticels are located that are critical for berry O 2 uptake as a function of temperature, and when blocked caused hypoxia in Chardonnay berries, ethanol accumulation, and CD. The implications of hypoxia in grape berries are discussed in terms of its role in CD, ripening, and berry water relations. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology

    Interactive effects of warming and water deficit on Shiraz vine transpiration

    Get PDF
    Anticipating vineyard irrigation requirements in future climates is of strategic importance to maintain sustainability and wine regional identity. In the context of worldwide warming and climate-driven shifts in amount and seasonality of rainfall, we investigate the interactive effects of warming and water deficit on vine transpiration. Transpiration of Shiraz vines was measured with thermal dissipation sap flow probes in a factorial experiment combining two thermal (heated with open-top chambers and control at ambient temperature) and two water regimes (wet and dry). Increased vapour pressure deficit (VPD) and canopy size in heated vines led to higher transpiration rates in irrigated vines during the first season. However, faster depletion of soil water by highly transpiring vines, followed by insufficient soil water replenishment by rain and irrigation, resulted in a negative feedback on vine transpiration the following season when heated vines were more water stressed than controls. The effect of warming was thus reversed the second season, with higher transpiration under ambient temperature. Therefore, dry soil, we suggest, could over-ride the effect of warming on the other variables driving transpiration (VPD, canopy size, and possibly stomatal conductance). Water scheduling will need to incorporate increased water demand under elevated temperature to maintain grapevine production in the long term

    The transgenerational effects of solar short-UV radiation differed in two accessions of Vicia faba L. from contrasting UV environments

    Get PDF
    Background and aims: UVB radiation can rapidly induce gene regulation leading to cumulative changes for plant physiology and morphology. We hypothesized that a transgenerational effect of chronic exposure to solar short UV modulates the offspring's responses to UVB and blue light, and that the transgenerational effect is genotype dependent. Methods: We established a factorial experiment combining two Vicia faba L. accessions, two parental UV treatments (full sunlight and exclusion of short UV, 290-350 nm), and four offspring light treatments from the factorial combination of UVB and blue light. The accessions were Aurora from southern Sweden, and ILB938 from Andean region of Colombia and Ecuador. Key results: The transgenerational effect influenced morphological responses to blue light differently in the two accessions. In Aurora, when UVB was absent, blue light increased shoot dry mass only in plants whose parents were protected from short UV. In ILB938, blue light increased leaf area and shoot dry mass more in plants whose parents were exposed to short UV than those that were not. Moreover, when the offspring was exposed to UVB, the transgenerational effect decreased in ILB938 and disappeared in Aurora. For flavonoids, the transgenerational effect was detected only in Aurora: parental exposure to short UV was associated with a greater induction of total quercetin in response to UVB. Transcript abundance was higher in Aurora than in ILB938 for both CHALCONE SYNTHASE (99-fold) and DON-GLUCOSYLTRANSFERASE 1 (19-fold). Conclusions: The results supported both hypotheses. Solar short UV had transgenerational effects on progeny responses to blue and UVB radiation, and they differed between the accessions. These transgenerational effects could be adaptive by acclimation of slow and cumulative morphological change, and by early build-up of UV protection through flavonoid accumulation on UVB exposure. The differences between the two accessions aligned with their adaptation to contrasting UV environments.Peer reviewe

    Temperature-Driven Developmental Modulation of Yield Response to Nitrogen in Wheat and Maize

    Get PDF
    Nitrogen management is central to the economic and environmental dimensions of agricultural sustainability. Yield response to nitrogen fertilisation results from multiple interacting factors. Theoretical frameworks are lagging for the interaction between nitrogen and air temperature, the focus of this study. We analyse the relation between yield response to nitrogen fertiliser and air temperature in the critical period of yield formation for spring wheat in Australia, winter wheat in the US, and maize in both the US and Argentina. Our framework assumes (i) yield response to nitrogen fertiliser is primarily related to grain number per m2, (ii) grain number is a function of three traits: the duration of the critical period, growth rate during the critical period, and reproductive allocation, and (iii) all three traits vary non-linearly with temperature. We show that “high” nitrogen supply may be positive, neutral, or negative for yield under “high” temperature, depending on the part of the response curve captured experimentally. The relationship between yield response to nitrogen and mean temperature in the critical period was strong in wheat and weak in maize. Negative associations for both spring wheat in Australia and winter wheat with low initial soil nitrogen ( 120 kg N ha-1) that favoured grain number and compromised grain fill, the relation between yield response to nitrogen and temperature was positive for winter wheat. The framework is particularly insightful where data did not match predictions; a non-linear function integrating development, carbon assimilation and reproductive partitioning bounded the pooled data for maize in the US and Argentina, where water regime, previous crop, and soil nitrogen overrode the effect of temperature on yield response to nitrogen fertilisation.Fil: Sadras, Victor O.. University of Adelaide; Australia. South Australian Research And Development Institute; AustraliaFil: Giordano, Nicolas. Kansas State University; Estados UnidosFil: Correndo, Adrian. Kansas State University; Estados UnidosFil: Cossani, C. Mariano. University of Adelaide; Australia. South Australian Research And Development Institute; AustraliaFil: Ferreyra, Juan M.. No especifíca;Fil: Caviglia, Octavio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos; ArgentinaFil: Coulter, Jeffrey A.. University of Minnesota; Estados UnidosFil: Ciampitti, Ignacio Antonio. Kansas State University; Estados UnidosFil: Lollato, Romulo P.. Kansas State University; Estados Unido

    Water Stress Scatters Nitrogen Dilution Curves in Wheat

    No full text
    Nitrogen dilution curves relate a crop’s critical nitrogen concentration (%Nc) to biomass (W) according to the allometric model %Nc = a W-b. This model has a strong theoretical foundation, and parameters a and b show little variation for well-watered crops. Here we explore the robustness of this model for water stressed crops. We established experiments to examine the combined effects of water stress, phenology, partitioning of biomass, and water-soluble carbohydrates (WSC), as driven by environment and variety, on the %Nc of wheat crops. We compared models where %Nc was plotted against biomass, growth stage and thermal time. The models were similarly scattered. Residuals of the %Nc - biomass model at anthesis were positively related to biomass, stem:biomass ratio, Δ13C and water supply, and negatively related to ear:biomass ratio and concentration of WSC. These are physiologically meaningful associations explaining the scatter of biomass-based dilution curves. Residuals of the thermal time model showed less consistent associations with these variables. The biomass dilution model developed for well-watered crops overestimates nitrogen deficiency of water-stressed crops, and a biomass-based model is conceptually more justified than developmental models. This has implications for diagnostic and modeling. As theory is lagging, a greater degree of empiricism might be useful to capture environmental, chiefly water, and genotype-dependent traits in the determination of critical nitrogen for diagnostic purposes. Sensitivity analysis would help to decide if scaling nitrogen dilution curves for crop water status, and genotype-dependent parameters are needed

    Estimating yield gaps at the cropping system level

    Get PDF
    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems (e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design

    Patterns of water stress and temperature for Australian chickpea production

    No full text
    The environment is the largest component of the phenotypic variance of crop yield, hence the importance of its quantitative characterisation. Many studies focussed on the patterns of water deficit for specific crops and regions, but concurrent water and thermal characterisations have not been reported. To quantify the types, spatial patterns, frequency and distribution of both water stress and thermal regimes for chickpea in Australia, we combined trial and modelled data. Data from National Variety Trials including sowing time, yield and weather from 295 production environments were entered into simulations. Associations between actual yield, in a range from 0.2 to 5.2 t/ha, actual temperature and modelled crop water stress were explored. Yield correlated positively with minimum temperature in the 800 degree-days window bracketing flowering and the correlation shifted to negative after flowering. A negative correlation between maximum temperature over 30°C and yield was found from flowering through to 1000 degree-days after flowering. Yield was negatively correlated with simulated water stress from flowering until 800 degree-days after flowering. Cluster analysis from 3905 environments (71 locations × 55 years between 1958 and 2013) identified three dominant patterns for both maximum and minimum temperature accounting for 77% and 61% of the overall variation, and four dominant patterns for water stress accounting for 87% of total variation. The most frequent environments for minimum and maximum temperature were associated with low actual yield (1.5–1.8 t/ha) whereas the most frequent water-stress environment was associated with the second lowest actual yield (1.75 t/ha). For all temperature and water-stress types, we found significant spatial variation that is relevant to the allocation of effort in breeding programs

    Table_1.DOCX

    No full text
    <p>Nitrogen dilution curves relate a crop’s critical nitrogen concentration (%N<sub>c</sub>) to biomass (W) according to the allometric model %N<sub>c</sub> = a W<sup>-b</sup>. This model has a strong theoretical foundation, and parameters a and b show little variation for well-watered crops. Here we explore the robustness of this model for water stressed crops. We established experiments to examine the combined effects of water stress, phenology, partitioning of biomass, and water-soluble carbohydrates (WSC), as driven by environment and variety, on the %N<sub>c</sub> of wheat crops. We compared models where %N<sub>c</sub> was plotted against biomass, growth stage and thermal time. The models were similarly scattered. Residuals of the %N<sub>c</sub> - biomass model at anthesis were positively related to biomass, stem:biomass ratio, Δ<sup>13</sup>C and water supply, and negatively related to ear:biomass ratio and concentration of WSC. These are physiologically meaningful associations explaining the scatter of biomass-based dilution curves. Residuals of the thermal time model showed less consistent associations with these variables. The biomass dilution model developed for well-watered crops overestimates nitrogen deficiency of water-stressed crops, and a biomass-based model is conceptually more justified than developmental models. This has implications for diagnostic and modeling. As theory is lagging, a greater degree of empiricism might be useful to capture environmental, chiefly water, and genotype-dependent traits in the determination of critical nitrogen for diagnostic purposes. Sensitivity analysis would help to decide if scaling nitrogen dilution curves for crop water status, and genotype-dependent parameters are needed.</p
    corecore