1,689 research outputs found

    Ab initio calculation of the CdSe/CdTe heterojunction band offset using the local-density approximation-1/2 technique with spin-orbit corrections

    Get PDF
    We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe and of their interface. We employed the local-density approximation-1/2 self-energy correction scheme [L. G. Ferreira, M. Marques, and L. K. Teles, Phys. Rev. B 78, 125116 (2008)] to obtain improved band gaps and band offsets, as well as spin-orbit coupling to further correct the valence band edges. Our results are in good agreement with experimental values for bulk band gaps and reproduce the staggered band alignment characteristic of this system. We found that the spin-orbit effect is of considerable importance for the bulk band gaps, but has little impact on the band offset of this particular system. Moreover, the electronic structure calculated along the 61.4 Å transition region across the CdSe/CdTe interface shows a non-monotonic variation of the bandgap in the range 0.8-1.8 eV. This finding may have important implications to the absorption of light along the interface between these two materials in photovoltaic applications1117FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2006/05858-

    Optical/UV-to-X-Ray Echoes from the Tidal Disruption Flare ASASSN-14li

    Get PDF
    We carried out the first multi-wavelength (optical/UV and X-ray) photometric reverberation mapping of a tidal disruption flare (TDF) ASASSN-14li. We find that its X-ray variations are correlated with and lag the optical/UV fluctuations by 32±\pm4 days. Based on the direction and the magnitude of the X-ray time lag, we rule out X-ray reprocessing and direct emission from a standard circular thin disk as the dominant source of its optical/UV emission. The lag magnitude also rules out an AGN disk-driven instability as the origin of ASASSN-14li and thus strongly supports the tidal disruption picture for this event and similar objects. We suggest that the majority of the optical/UV emission likely originates from debris stream self-interactions. Perturbations at the self-interaction sites produce optical/UV variability and travel down to the black hole where they modulate the X-rays. The time lag between the optical/UV and the X-rays variations thus correspond to the time taken by these fluctuations to travel from the self-interaction site to close to the black hole. We further discuss these time lags within the context of the three variants of the self-interaction model. High-cadence monitoring observations of future TDFs will be sensitive enough to detect these echoes and would allow us to establish the origin of optical/UV emission in TDFs in general.Comment: Publish in ApJ Letter

    Disruption of pre-mRNA splicing in vivo results in reorganization of splicing factors

    Get PDF
    We have examined the functional significance of the organization of pre-mRNA splicing factors in a speckled distribution in the mammalian cell nucleus. Upon microinjection into living cells of oligonucleotides or antibodies that inhibit pre-mRNA splicing in vitro, we observed major changes in the organization of splicing factors in vivo. Interchromatin granule clusters became uniform in shape, decreased in number, and increased in both size and content of splicing factors, as measured by immunofluorescence. These changes were transient and the organization of splicing factors returned to their normal distribution by 24 h following microinjection. Microinjection of these oligonucleotides or antibodies also resulted in a reduction of transcription in vivo, but the oligonucleotides did not inhibit transcription in vitro. Control oligonucleotides did not disrupt splicing or transcription in vivo. We propose that the reorganization of splicing factors we observed is the result of the inhibition of splicing in vivo

    High-Energy Limit of Massless Dirac Fermions in Multilayer Graphene using Magneto-Optical Transmission Spectroscopy

    Full text link
    We have investigated the absorption spectrum of multilayer graphene in high magnetic fields. The low energy part of the spectrum of electrons in graphene is well described by the relativistic Dirac equation with a linear dispersion relation. However, at higher energies (>500 meV) a deviation from the ideal behavior of Dirac particles is observed. At an energy of 1.25 eV, the deviation from linearity is 40 meV. This result is in good agreement with the theoretical model, which includes trigonal warping of the Fermi surface and higher-order band corrections. Polarization-resolved measurements show no observable electron-hole asymmetry.Comment: 4 pages,3 figure

    Large-scale environments of binary AGB stars probed by Herschel. II: Two companions interacting with the wind of pi1 Gruis

    Full text link
    Context. The Mass loss of Evolved StarS (MESS) sample observed with PACS on board the Herschel Space Observatory revealed that several asymptotic giant branch (AGB) stars are surrounded by an asymmetric circumstellar envelope (CSE) whose morphology is most likely caused by the interaction with a stellar companion. The evolution of AGB stars in binary systems plays a crucial role in understanding the formation of asymmetries in planetary nebul{\ae} (PNe), but at present, only a handful of cases are known where the interaction of a companion with the stellar AGB wind is observed. Aims. We probe the environment of the very evolved AGB star π1\pi^1 Gruis on large and small scales to identify the triggers of the observed asymmetries. Methods. Observations made with Herschel/PACS at 70 μ\mum and 160 μ\mum picture the large-scale environment of π1\pi^1 Gru. The close surroundings of the star are probed by interferometric observations from the VLTI/AMBER archive. An analysis of the proper motion data of Hipparcos and Tycho-2 together with the Hipparcos Intermediate Astrometric Data help identify the possible cause for the observed asymmetry. Results. The Herschel/PACS images of π1\pi^1 Gru show an elliptical CSE whose properties agree with those derived from a CO map published in the literature. In addition, an arc east of the star is visible at a distance of 3838^{\prime\prime} from the primary. This arc is most likely part of an Archimedean spiral caused by an already known G0V companion that is orbiting the primary at a projected distance of 460 au with a period of more than 6200 yr. However, the presence of the elliptical CSE, proper motion variations, and geometric modelling of the VLTI/AMBER observations point towards a third component in the system, with an orbital period shorter than 10 yr, orbiting much closer to the primary than the G0V star.Comment: 13 pages, 11 figures, accepted for publication in Astronomy & Astrophysic

    Photoemission studies of Ga1x_{1-x}Mnx_{x}As: Mn-concentration dependent properties

    Full text link
    Using angle-resolved photoemission, we have investigated the development of the electronic structure and the Fermi level pinnning in Ga1x_{1-x}Mnx_{x}As with Mn concentrations in the range 1--6%. We find that the Mn-induced changes in the valence-band spectra depend strongly on the Mn concentration, suggesting that the interaction between the Mn ions is more complex than assumed in earlier studies. The relative position of the Fermi level is also found to be concentration-dependent. In particular we find that for concentrations around 3.5--5% it is located very close to the valence-band maximum, which is in the range where metallic conductivity has been reported in earlier studies. For concentration outside this range, larger as well as smaller, the Fermi level is found to be pinned at about 0.15 eV higher energy.Comment: REVTeX style; 7 pages, 3 figure

    The mechanism of caesium intercalation of graphene

    Get PDF
    Properties of many layered materials, including copper- and iron-based superconductors, topological insulators, graphite and epitaxial graphene can be manipulated by inclusion of different atomic and molecular species between the layers via a process known as intercalation. For example, intercalation in graphite can lead to superconductivity and is crucial in the working cycle of modern batteries and supercapacitors. Intercalation involves complex diffusion processes along and across the layers, but the microscopic mechanisms and dynamics of these processes are not well understood. Here we report on a novel mechanism for intercalation and entrapment of alkali-atoms under epitaxial graphene. We find that the intercalation is adjusted by the van der Waals interaction, with the dynamics governed by defects anchored to graphene wrinkles. Our findings are relevant for the future design and application of graphene-based nano-structures. Similar mechanisms can also play a role for intercalation of layered materials.Comment: 8 pages, 7 figures in published form, supplementary information availabl

    Convergent metabotropic signalling pathways inhibit SK channels to promote synaptic plasticity in the hippocampus

    Get PDF
    Hebbian synaptic plasticity at hippocampal Schaffer collateral synapses is tightly regulated by postsynaptic SK channels that restrict NMDA receptor activity. SK channels are themselves modulated by G-protein-coupled signalling pathways, but it is not clear under what conditions these are activated to enable synaptic plasticity. Here, we show that muscarinic M1 receptor (M1R) and type 1 metabotropic glutamate receptor (mGluR1) signalling pathways, which are known to inhibit SK channels and thereby disinhibit NMDA receptors, converge to facilitate spine calcium transients during the induction of long-term potentiation (LTP) at hippocampal Schaffer collateral synapses onto CA1 pyramidal neurons of male rats. Furthermore, mGluR1 activation is required for LTP induced by reactivated place cell firing patterns that occur in sharp wave ripple events during rest or sleep. In contrast, M1R activation is required for LTP induced by place cell firing patterns during exploration. Thus, we describe a common mechanism that enables synaptic plasticity during both encoding and consolidation of memories within hippocampal circuits
    corecore