683 research outputs found

    Testing a system specified using Statecharts and Z

    Get PDF
    A hybrid specification language SZ, in which the dynamic behaviour of a system is described using Statecharts and the data and the data transformations are described using Z, has been developed for the specification of embedded systems. This paper describes an approach to testing from a deterministic sequential specification written in SZ. By considering the Z specifications of the operations, the extended finite state machine (EFSM) defined by the Statechart can be rewritten to produce an EFSM that has a number of properties that simplify test generation. Test generation algorithms are introduced and applied to an example. While this paper considers SZ specifications, the approaches described might be applied whenever the specification is an EFSM whose states and transitions are specified using a language similar to Z

    Nitric oxide increases Pb tolerance by lowering Pb uptake and translocation as well as phytohormonal changes in cowpea (Vigna unguiculata (L.) Walp.)

    Get PDF
    Lead (Pb) is one of the most abundant toxic heavy metals which adversely affected growth and yield of crop plants. Nitric oxide (NO), an endogenous signaling molecule, has been suggested to be involved in defense responses to biotic and abiotic stresses in plants. The present study was done to induce Pb tolerance in cowpea plants by exogenous NO application using two levels of Pb, 0 and 200 mg Pb (NO3)2 kg-1 soil and three NO levels, 0, 0.5 and 1 mM sodium nitroprusside (SNP), as NO donor. The results showed that Pb treatment caused a significant increase in Pb concentration in all plant parts. Roots had higher levels of Pb than the stems, leaves and seeds. Furthermore, lead toxicity reduced auxin (IAA), cytokinin and gibberellic acid (GA3) content but increased abscisic acid (ABA) level. Moreover Pb stress decreased stomatal conductance, leaf area and consequently seed yield of cowpea. Exogenous application of NO at 0.5 mM noticeably alleviated the lead toxicity by improving the leaf area, stomatal conductance and seed yield. NO increased Pb tolerance by lowering Pb uptake and translocation, enhancing the promoting phytohormone (IAA, cytokinin and GA3) level and reducing ABA content

    Correcting for Targeted and Control Agent Signal Differences in Paired-Agent Molecular Imaging of Cancer Cell-Surface Receptors

    Get PDF
    Paired-agent kinetic modeling protocols provide one means of estimating cancer cell-surface receptors with in vivo molecular imaging. The protocols employ the coadministration of a control imaging agent with one or more targeted imaging agent to account for the nonspecific uptake and retention of the targeted agent. These methods require the targeted and control agent data be converted to equivalent units of concentration, typically requiring specialized equipment and calibration, and/or complex algorithms that raise the barrier to adoption. This work evaluates a kinetic model capable of correcting for targeted and control agent signal differences. This approach was compared with an existing simplified paired-agent model (SPAM), and modified SPAM that accounts for signal differences by early time point normalization of targeted and control signals (SPAMPN). The scaling factor model (SPAMSF) outperformed both SPAM and SPAMPN in terms of accuracy and precision when the scale differences between targeted and imaging agent signals (α) were not equal to 1, and it matched the performance of SPAM for α  =  1. This model could have wide-reaching implications for quantitative cancer receptor imaging using any imaging modalities, or combinations of imaging modalities, capable of concurrent detection of at least two distinct imaging agents (e.g., SPECT, optical, and PET/MR)

    Quantifying Cancer Cell Receptors with Paired-Agent Fluorescent Imaging: a Novel Method to Account for Tissue Optical Property Effects.

    Get PDF
    Dynamic fluorescence imaging approaches can be used to estimate the concentration of cell surface receptorsin vivo. Kinetic models are used to generate the final estimation by taking the targeted imaging agent concentration as a function of time. However, tissue absorption and scattering properties cause the final readout signal to be on a different scale than the real fluorescent agent concentration. In paired-agent imaging approaches, simultaneous injection of a suitable control imaging agent with a targeted one can account for non-specific uptake and retention of the targeted agent. Additionally, the signal from the control agent can be a normalizing factor to correct for tissue optical property differences. In this study, the kinetic model used for paired-agent imaging analysis (i.e., simplified reference tissue model) is modified and tested in simulation and experimental data in a way that accounts for the scaling correction within the kinetic model fit to the data to ultimately extract an estimate of the targeted biomarker concentration

    Design and Analysis of a Magneto-Rheological Fluid Damper with Non-linear Surfaces to Produce Effective Variable Compliance in a Robotic Transmission

    Get PDF
    Our communities have been designed for human movement; therefore, the development of machines that locomote like humans is a natural approach to mechanical locomotion. Two problems in developing autonomous versions of these machines are energy consumption and the risks associated with the possible impact of robotic components with the humans around them. Research has shown that using variable compliance, or elasticity, in robotic joints can decrease both of these factors. This project is focused on the development of a variable compliance robotic transmission based on Magneto-Rheological (MR) fluid for increasing biped walking efficiency and decreasing the impact forces associated with a possible collision. The results of this study are important in developing autonomous robots that can safely interact with humans for an extended period of time.No embarg
    corecore