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Quantifying cancer cell receptors with paired-agent
fluorescent imaging: a novel method to account for tissue
optical property effects

Negar Sadeghipour?, Scott C. Davis”, and Kenneth M. Tichauer®

2Department of Biomedical Engineering, Illinois Institute of Technology, 3255 S Dearborn St.,
Chicago, IL USA 60616
PThayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, NH USA
03755-8001

ABSTRACT

Dynamic fluorescence imaging approaches can be used to estimate the concentration of cell surface receptors in
vivo. Kinetic models are used to generate the final estimation by taking the targeted imaging agent concentration
as a function of time. However, tissue absorption and scattering properties cause the final readout signal to be on
a different scale than the real fluorescent agent concentration. In paired-agent imaging approaches, simultaneous
injection of a suitable control imaging agent with a targeted one can account for non-specific uptake and retention
of the targeted agent. Additionally, the signal from the control agent can be a normalizing factor to correct for
tissue optical property differences. In this study, the kinetic model used for paired-agent imaging analysis (i.e.,
simplified reference tissue model) is modified and tested in simulation and experimental data in a way that
accounts for the scaling correction within the kinetic model fit to the data to ultimately extract an estimate of
the targeted biomarker concentration.

Keywords: Dynamic fluorescence imaging, kinetic modeling, Epidermal growth factor receptor quantification

1. INTRODUCTION

In cancer therapy, characterizing different types of biomarkers is a key component in identifying patients who
are likely to respond to a given therapy.! Moving away from measuring these biomarkers from tumor biopsies
and toward more non-invasive methods such as imaging techniques should allow better monitoring of oncology
patients.?3 In fluorescence imaging, syntheses of new targeted imaging agents are rapidly expanding.*® Despite
its limitations in whole-body human imaging, fluorescence imaging is suitable for dynamic small animal ”in
vivo” imaging.®7 Cell surface receptors that transmit proliferation signals are important biomarkers in cancer
research.®? Mathematical models are needed to analyze the fluorescence data and to quantify the available
cell surface receptors.'®'* Paired-agent imaging is a successful approach to quantify cell surface receptors in
vivo.'> 16 In this technique, a second control counterpart of the targeted imaging agent is co-injected with the
targeted one to account for non-specific uptake and retention of the targeted imaging agent.!”'® The control
agent is labeled with fluorophore having its emission peak at a different channel than the targeted fluorophore.
In this way, the two imaging agents can be imaged at the same time with a spectrally resolved imaging device.
Paired-agent imaging has shown promising results in quantifying cell surface receptors.'® 20 However, distorting
effects of the optical absorption and scattering of tissue is an obstacle in measuring of fluorescent agent con-
centrations accurately.?! These tissue optical property effects could cause errors in paired-agent imaging, if not
accounted for, since the two imaging agents are often imaged at different wavelength that could have different
tissue optical properties. As a result, a normalization tool must be applied to correct for tissue optical property
differences. In the previous study,?? a pixel-by-pixel normalization tool was demonstrated to partially account
for spatial variability in the optical property differences by dividing the targeted signal to the control signal at
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a l-minute post-injection time point. In this method it is assumed that an early time point data after injection
is available and the targeted and control signals are affected only by the tissue optical properties at early time
points after imaging agent administration.?? Correcting for optical tissue properties with a factor in the kinetic
model is another way of normalizing for tissue attenuation between the two imaging agents.

In this study, the dynamic simplified reference tissue kinetic model that is applied to the paired-agent imaging
methods is compared in two different cases: 1) as it was originally used by taking the pixel-by-pixel normalized
targeted and control curves for its inputs and 2) as a modified version by taking the intact signals directly to
the model. The models were evaluated in simulation and in a subcutaneous tumor mouse study.

2. METHODS AND RESULTS
2.1 Animal Experiment

The detailed animal model study can be found here.?® Briefly, a group (n = 6) of athymic nude mice were
injected subcutaneously with A431 tumor, known for a high level of epidermal growth factor receptor (EGFR)
overexpression. After the tumors got to the appropriate size (about 5 mm in diameter), the skin above the
tumors was removed, and the mice were injected intravenously with a cocktail of IRDye 800CW-EGF (targeted)
and IRDye 700DX-carboxylate (control) (0.2 nanomoles each). Mice were immediately placed in a two-channel
(700 and 800 nm) Odyssey (LICOR Biosciences, Lincoln, NE) scanner and fluorescent images at 700-740 nm
(excitation: 685 nm) and 800-840 nm (excitation: 785 nm) were acquired every two minutes for 1 h. The data
were later corrected by normalizing each image stack with a pixel-by-pixel normalization factor (the details of this
approach can be found in??). The corrected data were evaluated by the original simplified reference tissue model
(O-SRTM) explained in 2.3.1. Moreover, the raw data were given inputed to the modified SRTM (M-SRTM) as
explained in section 2.3.2.
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Figure 1. Experimental results. (a) Estimated BP for A431 tumors, green:M-SRTM and red: O-SRTM. (b) Estimated
BP for M-SRTM vs. O-SRTM.

Figure 1 is the results of BP estimation by the two methods. A strong correlation was observed between
M-SRTM and O-SRTM measures of binding potential for A431 cell line, in vivo (r=0.79, slope=.79, and inter-
cept=0.40). In all of this, it is assumed the uptake of the two imaging agents are similar in the blood plasma,
however, this assumption needs to be tested in future work.?*

2.2 Simulation

A simulation study was carried out by creating targeted and control imaging agent concentration curves from
an experimentally-derived plasma input curve of EGF molecule. The data is solved through a standard Kety
model.?> After giving artificial scales to the targeted curves (to simulate the scale differences), the created
curves were given 1000 times noise iterations and they were fitted into the O-SRTM and M-SRTM. Figure 2 (a)
and (b) are showing an example of the created curves without noise and after adding Poisson noise and scaling
the targeted curves, respectively. Figure 2 (c) is Relative error in BP estimation after increasing the time of
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normalization from 1 minutes to 10 minutes post tracers injection. According to this plot the underestimaton of
BP increases by increasing the pixel-by-pixel normalization time.
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Figure 2. (a) simulated targeted and control curves. (b) simulated noise added targeted and control curves with different
Qtumor (€) % error in BP estimation by O-SRTM method.

In Figure 3, the results of O-SRTM and M-SRTM parameter estimation, for different given scaling factors
are shown. According to this figure, both models are pretty stable in BP estimation regardless of the given
scaling factor. O-SRTM is underestimating the BP for about 2.5% and M-SRTM is overestimating it for about
5%. The underestimation of BP by O-SRTM will increase by increasing the time of normalization from 1 minute
post-injection. O-SRTM underestimates the ko and R; parameters while M-SRTM overestimate the ko and
underestimate «.
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Figure 3. % of relative errors in estimation of parameters by two kinetic models blue lines: O-SRTM and orange lines:
M-SRTM by changing the scaling parameter (o). (a) BP estimation. (b) k2 estimation. (c¢) R; estimation. (d) ctumor
estimation.
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2.3 Paired-agent Kinetic Model

Paired-agent kinetic models are based on a two-tissue and one-tissue compartment models. Schematic details of
the model is shown in Figure 4. The goal of the model is to estimate the binding potential (BP), a parameter
proportional to cell surface receptor concentration.
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Figure 4. On the left is a schematic of subcutaneous mouse tumor model is represented. In the middle is an illustration
of single targeted imaging agent (top) and how non-specific retention can happen on the surface of a cell or in free space,
and the paired-agent imaging methods (bottom) and how it is accounted for the non-specific uptake by a control imaging
agent is shown. On the right, compartment models for both the targeted and control tracers are depicted on top and
bottom, respectively. K; and ko represent transit rates of the tracers from the blood plasma, to the extravascular space
and back; k3 and k4 represent association and dissociation rates of the targeted tracers. Binding potential (BP), is a
parameter proportional to the receptor concentration (Bguaeir). Kp is the dissociation rate constant that relates the BP
to Bavm‘l~

2.3.1 Original Reference Tissue Model (O-SRTM)

Quantification of EGFR was determined using a least square curve fit model in Matlab R2016a. The kinetic
model is developed and adopted from a simplified reference tissue model originally introduced for PET imaging.2%
The model is shown in equation (1)

Ry

- 1_|_W)€7 1f}23pt * .ROIC‘]7 (1)

ROIr = "C[R\ROIG + ks(1
nc
where, ROIr and ROl are detected targeted and control agent signals measured in a region of interest, re-
spectively. n7 and n¢ are correction factors relating detected targeted and control agent signals to corresponding
agent concentration. R; is the ratio of extravasation of the targeted to the control agent. ko is the eflux rate
constant, BP is the binding potential, t is the time and * is convolution.
In pixel-by-pixel paired-agent imaging approaches, the nr/nc ratio was considered to be 1. As a result, the final
number of fitting parameters in O-SRTM is reduced to 3 parameters Ry, k2, and BP.
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2.3.2 Modified Reference Tissue Model (M-SRTM)

The modified SRTM, M-SRTM, is introduced in equation (2). In this model the new parameter of ayymor is
introduce to the model for the "—g This means a new fitting parameter is added to the model, however, by
keeping R close to 1, by choosing imaging agents that have similar rate of extravasation from blood flow, as a
result, the final fitting parameters are aiymor, k2 and BP.

1 ko
ROIt = apyumor ROIc + O‘tumoer(l - 1+ BP)ROIC xe H'Bpta (2)
ACKNOWLEDGMENTS

This work was sponsored by NIH research grant R0O1 CA184354, NSF CAREER 1653627, and the Nayar Prize
at Illinois Institute of Technology. We would also like to acknowledge Prof Brian W Pogue and Prof Kimberley
S Samkoe of Dartmouth College for sharing the animal data used in the analysis here.

REFERENCES

[1] Kelloff, G. J. and Sigman, C. C., “Cancer biomarkers: selecting the right drug for the right patient,” Nature
reviews Drug discovery 11(3), 201-214 (2012).

[2] Weissleder, R., “Molecular imaging in cancer,” Science 312(5777), 1168-1171 (2006).

[3] Weissleder, R. and Pittet, M. J., “Imaging in the era of molecular oncology,” Nature 452(7187), 580-589
(2008).

[4] Kobayashi, H., Ogawa, M., Alford, R., Choyke, P. L., and Urano, Y., “New strategies for fluorescent probe
design in medical diagnostic imaging,” Chemical reviews 110(5), 2620-2640 (2009).

[5] Rao, J., Dragulescu-Andrasi, A., and Yao, H., “Fluorescence imaging in vivo: recent advances,” Current
opinion in biotechnology 18(1), 17-25 (2007).

[6] Davis, S. C., Samkoe, K. S., Tichauer, K. M., Sexton, K. J., Gunn, J. R., Deharvengt, S. J., Hasan, T.,
and Pogue, B. W., “Dynamic dual-tracer mri-guided fluorescence tomography to quantify receptor density
in vivo,” Proceedings of the National Academy of Sciences 110(22), 9025-9030 (2013).

[7] Koo, V., Hamilton, P., and Williamson, K., “Non-invasive in vivo imaging in small animal research,”
Analytical Cellular Pathology 28(4), 127-139 (2006).

[8] Stangl, S., Gehrmann, M., Dressel, R., Alves, F., Dullin, C., Themelis, G., Ntziachristos, V., Staeblein, E.,
Walch, A., Winkelmann, 1., et al., “In vivo imaging of ct26 mouse tumours by using cmhsp70. 1 monoclonal
antibody,” Journal of cellular and molecular medicine 15(4), 874-887 (2011).

[9] Carson-Walter, E. B., Watkins, D. N.; Nanda, A., Vogelstein, B., Kinzler, K. W., and Croix, B. S., “Cell
surface tumor endothelial markers are conserved in mice and humans,” Cancer research 61(18), 6649-6655
(2001).

[10] Fibich, G., Hammer, A., Gannot, G., Gandjbakhche, A., and Gannot, I., “Modeling and simulations of the
pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-
based optical imaging,” Lasers in surgery and medicine 37(2), 155-160 (2005).

[11] Stein, A. M., Demuth, T., Mobley, D., Berens, M., and Sander, L. M., “A mathematical model of glioblas-
toma tumor spheroid invasion in a three-dimensional in vitro experiment,” Biophysical journal 92(1), 356—
365 (2007).

[12] Dai, X., Chen, Z., and Tian, J., “Performance evaluation of kinetic parameter estimation methods in
dynamic fdg-pet studies,” Nuclear medicine communications 32(1), 4-16 (2011).

[13] Salinas, C., Weinzimmer, D., Searle, G., Labaree, D., Ropchan, J., Huang, Y., Rabiner, E. A., Carson,
R. E., and Gunn, R. N., “Kinetic analysis of drug—target interactions with pet for characterization of
pharmacological hysteresis,” Journal of Cerebral Blood Flow € Metabolism 33(5), 700-707 (2013).

[14] Xu, X., Wang, Y., Xiang, J., Liu, J. T. C., and Tichauer, K. M., “Rinsing paired-agent model (rpam) to
quantify cell-surface receptor concentrations in topical staining applications of thick tissues.,” Physics in
medicine and biology 62(12), 5098 (2017).

Proc. of SPIE Vol. 10497 1049723-5

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 07 Aug 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



[15] Sadeghipour, N., Davis, S., and Tichauer, K., “Generalized paired-agent kinetic model for in vivo quan-
tification of cancer cell-surface receptors under receptor saturation conditions,” Physics in medicine and
biology 62(2), 394 (2016).

[16] Tichauer, K. M., Samkoe, K. S., Sexton, K. J., Gunn, J. R., Hasan, T., and Pogue, B. W., “Improved
tumor contrast achieved by single time point dual-reporter fluorescence imaging,” Journal of biomedical
optics 17(6), 0660011-06600110 (2012).

[17] Samkoe, K. S., Tichauer, K. M., Gunn, J. R., Wells, W. A, Hasan, T., and Pogue, B. W., “Quantitative
in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging
approach,” Cancer research 74(24), 7465-7474 (2014).

[18] Liu, J. T., Helms, M. W., Mandella, M. J., Crawford, J. M., Kino, G. S., and Contag, C. H., “Quan-
tifying cell-surface biomarker expression in thick tissues with ratiometric three-dimensional microscopy,”
Biophysical journal 96(6), 2405-2414 (2009).

[19] Tichauer, K., Samkoe, K., Klubben, W., Hasan, T., and Pogue, B., “Advantages of a dual-tracer model
over reference tissue models for binding potential measurement in tumors,” Physics in medicine and biol-
ogy 57(20), 6647 (2012).

[20] Tichauer, K. M., Wang, Y., Pogue, B. W., and Liu, J. T., “Quantitative in vivo cell-surface receptor imaging
in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging,”
Physics in medicine and biology 60(14), R239 (2015).

[21] Kim, A., Khurana, M., Moriyama, Y., and Wilson, B. C., “Quantification of in vivo fluorescence decou-
pled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” Journal of
biomedical optics 15(6), 067006-067006 (2010).

[22] Kanick, S. C., Tichauer, K. M., Gunn, J., Samkoe, K. S., and Pogue, B. W., “Pixel-based absorption cor-
rection for dual-tracer fluorescence imaging of receptor binding potential,” Biomedical optics express 5(10),
3280-3291 (2014).

[23] Tichauer, K. M., Samkoe, K. S.; Sexton, K. J., Hextrum, S. K., Yang, H. H., Klubben, W. S., Guun, J. R.,
Hasan, T., and Pogue, B. W., “In vivo quantification of tumor receptor binding potential with dual-reporter
molecular imaging,” Molecular Imaging and Biology 14(5), 584-592 (2012).

[24] Tichauer, K., Diop, M., Elliott, J., Samkoe, K., Hasan, T., Lawrence, K. S., and Pogue, B., “Accounting
for pharmacokinetic differences in dual-tracer receptor density imaging,” Physics in medicine and biol-
ogy 59(10), 2341 (2014).

[25] Kety, S. S., “The theory and applications of the exchange of inert gas at the lungs and tissues,” Pharma-
cological reviews 3(1), 1-41 (1951).

[26] Lammertsma, A. A. and Hume, S. P., “Simplified reference tissue model for pet receptor studies,” Neuroim-
age 4(3), 153-158 (1996).

Proc. of SPIE Vol. 10497 1049723-6

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 07 Aug 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



	Quantifying Cancer Cell Receptors with Paired-Agent Fluorescent Imaging: a Novel Method to Account for Tissue Optical Property Effects.
	Dartmouth Digital Commons Citation

	tmp.1565191736.pdf.oEmB2

