196 research outputs found

    A Bayesian approach to analysing cortico-cortical associative stimulation induced increases in the excitability of corticospinal projections in humans

    Get PDF
    Repeated pairing of transcranial magnetic stimulation (TMS) over left and right primary motor cortex (M1), at intensities sufficient to generate descending volleys, produces sustained increases in corticospinal excitability. In other paired associative stimulation (PAS) protocols, in which peripheral afferent stimulation is the first element, changes in corticospinal excitability achieved when the second stimulus consists of brief bursts of transcranial alternating current stimulation (tACS), are comparable to those obtained if TMS is used instead (McNickle and Carson 2015). The present aim was to determine whether associative effects are induced when the first stimulus of a cortico-cortical pair is tACS, or alternatively subthreshold TMS. Bursts of tACS (500 ms; 140 Hz; 1 mA) were associated (180 stimulus pairs) with single magnetic stimuli (120% resting motor threshold rMT) delivered over the opposite (left) M1. The tACS ended 6 ms prior to the TMS. In a separate condition, TMS (55% rMT) was delivered to right M1 6 ms before (120% rMT) TMS was applied over left M1. In a sham condition, TMS (120% rMT) was delivered to left M1 only. The limitations of null hypothesis significance testing are well documented. We therefore employed Bayes factors to assess evidence in support of experimental hypotheses—defined precisely in terms of predicted effect sizes, that these two novel variants of PAS increase corticospinal excitability. Although both interventions induced sustained (~ 20–30 min) increases in corticospinal excitability, the evidence in support of the experimental hypotheses (over specified alternatives) was generally greater for the paired TMS-TMS than the tACS-TMS conditions

    Household Transmission of Rotavirus in a Community with Rotavirus Vaccination in Quininde, Ecuador

    Get PDF
    Background: We studied the transmission of rotavirus infection in households in peri-urban Ecuador in the vaccination era. Methods: Stool samples were collected from household contacts of child rotavirus cases, diarrhea controls and healthy controls following presentation of the index child to health facilities. Rotavirus infection status of contacts was determined by RT-qPCR. We examined factors associated with transmissibility (index-case characteristics) and susceptibility (householdcontact characteristics). Results: Amongst cases, diarrhea controls and healthy control household contacts, infection attack rates (iAR) were 55%, 8% and 2%, (n = 137, 130, 137) respectively. iARs were higher from index cases with vomiting, and amongst siblings. Disease ARs were higher when the index child was ,18 months and had vomiting, with household contact ,10 years and those sharing a room with the index case being more susceptible. We found no evidence of asymptomatic infections leading to disease transmission. Conclusion: Transmission rates of rotavirus are high in households with an infected child, while background infections are rare. We have identified factors associated with transmission (vomiting/young age of index case) and susceptibility (young age/sharing a room/being a sibling of the index case). Vaccination may lead to indirect benefits by averting episodes or reducing symptoms in vaccinees

    Effects among healthy subjects of the duration of regularly practicing a guided imagery program

    Get PDF
    BACKGROUND: We examined a large number of healthy adults in the general community who had individually participated in a guided imagery (GI) program daily and for various durations, to examine the psychophysiological effects of a GI program within a healthy group. METHODS: We studied 176 subjects who had participated in sessions that were part of a guided imagery program, and who had practiced GI at home for 20 minutes once daily in a quiet place after mastering GI in the group sessions. The average duration of GI practiced at home was 6.88 ± 14.06 months (n = 138, range: 0 to 72). The Multiple Mood Scale (MMS), Betts (1909) Shortened Questionnaire on Mental Imagery (QMI), and a visual analog scale (VAS) of imagery vividness, salivary cortisol (C(S)) levels, general stress and general health were used in the sessions. RESULTS: We examined the relationship between the duration of daily GI practiced at home and MMS, QMI, C(S), general health, and general stress at baseline. The subjects who had practiced GI at home longer had lower negative mood scores at baseline and lower severity of stress, and higher positive mood at baseline (both at a session and at home), general health, and QMI scores at baseline. The MMS change during a session and the duration of daily GI practiced at home were not correlated. Repeated-measures analysis of covariance showed that the duration of daily GI practiced as the covariate was not associated with changes in the three C(S )levels. CONCLUSION: Although regularly practicing a GI program daily for 20 min did not affect the C(S )level or mood during a GI session for several hours, it kept a good condition of the general mental, physical well-being and their overall stress of the practitioners as they had practiced it for long duration. We postulate that subjects who have the high ability of imaging vividness showed the better mood, health status and less stress than those subjects who have the low ability of it did. The ability of image vividness of the long-term regular practitioners of GI was higher than its short-term or inexperienced practitioners, which allowed practitioners to produce more comfortable imagery. Consequently, the longer the duration that they had practiced GI program once a day regularly, the lower scores of their stress were and the higher scores of their health were. We suggest that the regular daily practice of a GI program might be connected to less stress and better health

    Training in the practice of noninvasive brain stimulation: Recommendations from an IFCN committee

    Get PDF
    As the field of noninvasive brain stimulation (NIBS) expands, there is a growing need for comprehensive guidelines on training practitioners in the safe and effective administration of NIBS techniques in their various research and clinical applications. This article provides recommendations on the structure and content of this training. Three different types of practitioners are considered (Technicians, Clinicians, and Scientists), to attempt to cover the range of education and responsibilities of practitioners in NIBS from the laboratory to the clinic. Basic or core competencies and more advanced knowledge and skills are discussed, and recommendations offered regarding didactic and practical curricular components. We encourage individual licensing and governing bodies to implement these guidelines

    Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review

    Get PDF
    Transcranial magnetic stimulation (TMS) was introduced as a non-invasive tool for the investigation of the motor cortex. The repetitive application (rTMS), causing longer lasting effects, was used to study the influence on a variety of cerebral functions. High-frequency (>1 Hz) rTMS is known to depolarize neurons under the stimulating coil and to indirectly affect areas being connected and related to emotion and behavior. Researchers found selective cognitive improvement after high-frequency (HF) stimulation specifically over the left dorsolateral prefrontal cortex (DLPFC). This article provides a systematic review of HF-rTMS studies (1999–2009) stimulating over the prefrontal cortex of patients suffering from psychiatric/neurological diseases or healthy volunteers, where the effects on cognitive functions were measured. The cognitive effect was analyzed with regard to the impact of clinical status (patients/healthy volunteers) and stimulation type (verum/sham). RTMS at 10, 15 or 20 Hz, applied over the left DLPFC, within a range of 10–15 successive sessions and an individual motor threshold of 80–110%, is most likely to cause significant cognitive improvement. In comparison, patients tend to reach a greater improvement than healthy participants. Limitations concern the absence of healthy groups in clinical studies and partly the absence of sham groups. Thus, future investigations are needed to assess cognitive rTMS effects in different psychiatric disorders versus healthy subjects using an extended standardized neuropsychological test battery. Since the pathophysiological and neurobiological basis of cognitive improvement with rTMS remains unclear, additional studies including genetics, experimental neurophysiology and functional brain imaging are necessary to explore stimulation-related functional changes in the brain

    Closing the Mind's Eye: Incoming Luminance Signals Disrupt Visual Imagery

    Get PDF
    Mental imagery has been associated with many cognitive functions, both high and low-level. Despite recent scientific advances, the contextual and environmental conditions that most affect the mechanisms of visual imagery remain unclear. It has been previously shown that the greater the level of background luminance the weaker the effect of imagery on subsequent perception. However, in these experiments it was unclear whether the luminance was affecting imagery generation or storage of a memory trace. Here, we report that background luminance can attenuate both mental imagery generation and imagery storage during an unrelated cognitive task. However, imagery generation was more sensitive to the degree of luminance. In addition, we show that these findings were not due to differential dark adaptation. These results suggest that afferent visual signals can interfere with both the formation and priming-memory effects associated with visual imagery. It follows that background luminance may be a valuable tool for investigating imagery and its role in various cognitive and sensory processes

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Transcranial Magnetic Stimulation Intensities in Cognitive Paradigms

    Get PDF
    BACKGROUND: Transcranial magnetic stimulation (TMS) has become an important experimental tool for exploring the brain's functional anatomy. As TMS interferes with neural activity, the hypothetical function of the stimulated area can thus be tested. One unresolved methodological issue in TMS experiments is the question of how to adequately calibrate stimulation intensities. The motor threshold (MT) is often taken as a reference for individually adapted stimulation intensities in TMS experiments, even if they do not involve the motor system. The aim of the present study was to evaluate whether it is reasonable to adjust stimulation intensities in each subject to the individual MT if prefrontal regions are stimulated prior to the performance of a cognitive paradigm. METHODS AND FINDINGS: Repetitive TMS (rTMS) was applied prior to a working memory task, either at the 'fixed' intensity of 40% maximum stimulator output (MSO), or individually adapted at 90% of the subject's MT. Stimulation was applied to a target region in the left posterior middle frontal gyrus (pMFG), as indicated by a functional magnetic resonance imaging (fMRI) localizer acquired beforehand, or to a control site (vertex). Results show that MT predicted the effect size after stimulating subjects with the fixed intensity (i.e., subjects with a low MT showed a greater behavioral effect). Nevertheless, the individual adaptation of intensities did not lead to stable effects. CONCLUSION: Therefore, we suggest assessing MT and account for it as a measure for general cortical TMS susceptibility, even if TMS is applied outside the motor domain

    Time Course of the Involvement of the Right Anterior Superior Temporal Gyrus and the Right Fronto-Parietal Operculum in Emotional Prosody Perception

    Get PDF
    In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody) conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS) to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400–1900 ms). Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction), revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become more apparent half-way through the sentence
    corecore