704 research outputs found
Ubiquitin and Fanconi Anemia
Fanconi anemia (FA) is an inherited disease distinct from the failure of bone marrow, growth disturbance, predisposition to cancer and concomitant chromosomal abnormalities. FA is associated with genes involved in DNA replication and DNA repair processes. More than 20 proteins have been identified to be related with FANC pathway operation. Necessary prerequisite for activation and regulation of FA pathway is the monoubiquitination of heterodimer FANCD2-FANCI by core proteins of Fanc complex. The monoubiquitination of FANCD2-FANCI is crucial for nuclear localization of heterodimer, binding to chromatin and regulation of DNA repair procedure. Mutations of genes of FANC complex proteins associated with deficiency of DNA repair pathways affected cellular and genome instability. The interaction between proteins and ubiquitination affected genomic integrity and stability
Generation of Intracellular Signals by Low Density Lipoprotein Is Independent of the Classical LDL Receptor
Low density lipoprotein cholesterol (LDL) and apolipoprotein B-100 (1 to 15 μg/mL) had no significant influence on the inositol-1,4,5-trisphosphate (InsPa) formation in vascular smooth muscle cells and fibroblasts. Low density lipoprotein cholesterol (15 μg/mL) induced an elevation of intracellular Ca2+ from 85 to approximately 210 nmol/L in vascular smooth muscle cells from rat aorta in the absence or in the presence of 15 μg/mL monoclonal antibodies against the classical low density lipoprotein receptor or in the presence of apolipoprotein B-100. Moreover, in both human cultured fibroblasts from normocholesterolemic individuals and from patients with familial hypercholesterolemia homozygote class 1, LDL induced a dose-dependent rise of free intracellular calcium and a biphasic change of intracellular pH. Since homozygote class 1 fibroblasts are classical LDL receptor negative, and as antibodies against this receptor, as well as apolipoprotein B-100, did not attenuate the LDL-induced elevation of cytosolic calcium, we conclude that LDL might modify vascular activity via the observed intracellular changes without involving the classical low density lipoprotein receptor. Am J Hypertens 1991;4:274-27
Epigenetic mechanisms of Strip2 in differentiation of pluripotent stem cells
Significant evidence points to Strip2 being a key regulator of the differentiation processes of pluripotent embryonic stem cells. However, Strip2 mediated epigenetic regulation of embryonic differentiation and development is quite unknown. Here, we identified several interaction partners of Strip2, importantly the co-repressor molecular protein complex nucleosome remodeling deacetylase/Tripartite motif-containing 28/Histone deacetylases/Histone-lysine N-methyltransferase SETDB1 (NuRD/TRIM28/HDACs/SETDB1) histone methyltransferase, which is primarily involved in regulation of the pluripotency of embryonic stem cells and its differentiation. The complex is normally activated by binding of Krueppel-associated box zinc-finger proteins (KRAB-ZFPs) to specific DNA motifs, causing methylation of H3 to Lysin-9 residues (H3K9). Our data showed that Strip2 binds to a DNA motif (20 base pairs), like the KRAB-ZFPs. We establish that Strip2 is an epigenetic regulator of pluripotency and differentiation by modulating DNA KRAB-ZFPs as well as the NuRD/TRIM28/HDACs/SETDB1 histone methyltransferase complex
Gene expression signatures defining fundamental biological processes in pluripotent, early, and late differentiated embryonic stem cells
Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of MageB16, a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed
Pressure and temperature effects on metal-to-metal charge transfer in cyano-bridged Co-III-Fe-II complexes
The effects of pressure and temperature on the energy (E-op) of the metal-to-metal charge transfer (MMCT, Fe-II --> Co-III) transition of the cyano-bridged complexes trans - [(LCoNCFe)-Co-14(CN)(5)](-) and cis-[(LCoNCFe)-Co-14(CN)(5)](-) (where L-14 = 6-methyl-1,4,8,11-tetraazacyclotetradecan-6-amine) were examined. The changes in the redox potentials of the cobalt and iron metal centres with pressure and temperature were also examined and the results interpreted with Marcus Hush theory. The observed redox reaction volumes can mainly be accounted for in terms of localised electrostriction effects. The shifts in E-op due to both pressure and temperature were found to be less than the shifts in the energy difference (E degrees) between the Co-III-Fe-II and Co-II-Fe-III redox isomers. The pressure and temperature dependence of the reorganisational energy, as well as contributions arising from the different spin states of Co-II, are discussed in order to account for this trend. To study the effect of pressure on Co-III electronic absorption bands, a new cyano-bridged complex, trans - [(LCoNCCo)-Co-14(CN)(5)], was prepared and characterised spectroscopically and structurally. X-Ray crystallography revealed this complex to be isostructural with trans -[(LCoNCFe)-Co-14(CN)(5)] center dot 5H(2)O
Kinetic modeling of stem cell transcriptome dynamics to identify regulatory modules of normal and disturbed neuroectodermal differentiation
Thousands of transcriptome data sets are available, but approaches for their use in dynamic cell response modelling are few, especially for processes affected simultaneously by two orthogonal influencing variables. We approached this problem for neuroepithelial development of human pluripotent stem cells (differentiation variable), in the presence or absence of valproic acid (signaling variable). Using few basic assumptions (sequential differentiation states of cells; discrete on/off states for individual genes in these states), and time-resolved transcriptome data, a comprehensive model of spontaneous and perturbed gene expression dynamics was developed. The model made reliable predictions (average correlation of 0.85 between predicted and subsequently tested expression values). Even regulations predicted to be non-monotonic were successfully validated by PCR in new sets of experiments. Transient patterns of gene regulation were identified from model predictions. They pointed towards activation of Wnt signaling as a candidate pathway leading to a redirection of differentiation away from neuroepithelial cells towards neural crest. Intervention experiments, using a Wnt/beta-catenin antagonist, led to a phenotypic rescue of this disturbed differentiation. Thus, our broadly applicable model allows the analysis of transcriptome changes in complex time/perturbation matrices
Development of a pluripotent stem cell derived neuronal model to identify chemically induced pathway perturbations in relation to neurotoxicity: Effects of CREB pathway inhibition
JRC.I.5-Systems Toxicolog
- …