9 research outputs found
Electrochemical evaluations of reduced graphene oxide for efficient counter electrode in dye-sensitized solar cell
The design and development of an alternative counter electrode (CE) using graphene-based low-cost material for the dye-sensitized solar cell (DSSC) is the major motivation of the current research to replace the traditional platinum counter electrode. Herein, we prepared reduced graphene oxide (rGO) and investigated it for an efficient CE in DSSC. The structural and morphological properties of rGO are analyzed using FESEM, TEM and Raman techniques. The performance of I3- reduction on the CE is characterized by the EIS Nyquist plot, cyclic voltammetry, and the Tafel curve. The measured electrochemical results suggested that rGO CE has a lower charge transfer resistance (Rct), higher cathodic current density (Jrd), and higher Tafel slope as compared to graphene oxide (GO) CE, revealing that rGO CE has good catalytic activity towards the I3- reduction
Chemical vapor deposited graphene-based quasi-solid-state ultrathin and flexible sodium-ion supercapacitor
Flexible electronic devices find wide application in wearable electronics and foldable gadgets. This article reports chemical vapor deposited (CVD) few-layers graphene for a solid-state flexible supercapacitor device. Raman spectroscopy analysis reveals up to five layers in the graphene samples. Polyvinyl alcohol-Na2SO4 hydrogel membrane is used as a gel polymer electrolyte (GPE). 50 nm thick silver (Ag) deposited on polyethylene terephthalate (PET) through E-beam deposition served as the flexible current collector for the device. Galvanostatic charge-discharge (GCD) executed on the fabricated device to analyze its electrochemical performance yielded a specific areal capacitance of 15.3 mF cm-2 at 0.05 mA cm-2 current density. The obtained power density of the fabricated device is 0.53 µWh cm-2 at a power density of 25 µW cm-2
Consistency analysis for the performance of planar detector systems used in advanced radiotherapy
Purpose: To evaluate the performance linked to the consistency of a-Si EPID and ion-chamber array detectors for dose verification in advanced radiotherapy.Methods: Planar measurements were made for 250 patients using an array of ion chamber and a-Si EPID. For pre-treatment verification, the plans were generated on the phantom for re-calculation of doses. The γ-evaluation method with the criteria: dose-difference (DD) ≤ 3% and distance-to-agreement (DTA) ≤ 3 mm was used for the comparison of measurements. Also, the central axis (CAX) doses were measured using 0.125cc ion chamber and were compared with the central chamber of array and central pixel correlated dose value from EPID image. Two types of statistical approaches were applied for the analysis. Conventional statistics used analysis of variance (ANOVA) and unpaired t-test to evaluate the performance of the detectors. And statistical process control (SPC) was utilized to study the statistical variation for the measured data. Control charts (CC) based on an average , standard deviation ( ) and exponentially weighted moving averages (EWMA) were prepared. The capability index (Cpm) was determined as an indicator for the performance consistency of the two systems.Results: Array and EPID measurements had the average gamma pass rates as 99.9% ± 0.15% and 98.9% ± 1.06% respectively. For the point doses, the 0.125cc chamber results were within 2.1% ± 0.5% of the central chamber of the array. Similarly, CAX doses from EPID and chamber matched within 1.5% ± 0.3%. The control charts showed that both the detectors were performing optimally and all the data points were within ± 5%. EWMA charts revealed that both the detectors had a slow drift along the mean of the processes but was found well within ± 3%. Further, higher Cpm values for EPID demonstrate its higher efficiency for radiotherapy techniques.Conclusion: The performances of both the detectors were seen to be of high quality irrespective of the radiotherapy technique. Higher Cpm values for EPID indicate its higher efficiency than array
Validation of an integrated patient positioning system: Exactrac and iViewGT on Synergy Platform
Purpose: Evaluation of the newly integrated system for its validation and designing a quality assurance frame work to assess its geometrical, radiological and mechanical accuracy.Methods: Isocentric accuracy of two independent imaging modalities, kV based ExacTrac and MV based iViewGT was evaluated using Winston-Lutz test. A pelvic humanoid phantom was used for the radiological end-to-end test for its clinical utilization. Image quality for the systems was evaluated using Las Vegas Phantom and ETR-1 plate. The kV system was also assessed for kVp accuracy, kVp - dose linearity, mAs-dose linearity and timer linearity and its accuracy. The system was tested for total filtration and output consistency. Tests for uniformity and noise measurement of kVp accuracy and its reproducibility, linearity test between applied kVp and the x-ray dose, linearity Test between applied mAs and the x-ray dose were also done. Results: Winston-Lutz test gave the isocentric deviation of 0.058 ± 0.015 mm with the average lateral deviation as 0.028 ± 0.021 mm, average longitudinal deviation as 0.032 ± 0.015 mm and average vertical deviation as 0.030 ± 0.016 mm. With the phantom test, the minimum measured displacement of Exactrac positioning was 0.2 ± 0.3 mm, 0.0 ± 0.2 mm and 0.1 ± 0.3 mm in longitudinal, lateral and vertical directions respectively. In image quality test, visible smallest visible hole size seen by both Exactrac and EPID imaging system was 5 mm and can resolve 1.5 lp/mm or better. The image uniformity was found to be 132.9 ± 3.06 pixels for MV images and 139 ± 4.41 pixels for kV images with the associated noise of ≤1% both for 120 kV-20 mAs and 4 MV beam energy of ExacTrac and iViewGT respectively. The uniformity and noise test, measured pixel intensity values for various points on MV and kV images separately were found to agree within ± 1% with respect to the central axis pixel value. The kVp accuracy and its reproducibility were tested for kV imager only. The deviation of kVp was found to be than ± 1% and its precision was seen to be even lesser than ± 0.1%. Linearity test between applied kVp and the x-ray dose and applied mAs and x-ray dose were tested only for the ExacTrac. Both the coefficient of linearity for kVp as well as mAs was found to be < 0.1. Conclusion: It is feasible to install ExacTrac imaging system with an Elekta linear accelerator. Both the imaging systems were found to be compatible in terms of image quality test and isocentric accuracy and can be used for the patient imaging in the same Linear accelerator.-----------------------------Cite this article as: Jassal K, Munshi A, Sarkar B, Paul S, Sharma A, Mohanti BK, Ganesh T, Chougule A, Sachdev K. Validation of an integrated patient positioning system: Exactrac and iViewGT on Synergy Platform. Int J Cancer Ther Oncol 2014; 2(2):020212. DOI: 10.14319/ijcto.0202.1
Mobility and threshold voltages comparison of zinc nitride-based thin-film transistor fabricated on Si and glass
The present work reports the fabrication and characterization of high mobility thin-film transistors, where zinc nitride is used as the active layer (∼100 nm thick). For the TFT, the active layer was deposited at room temperature on different substrates (Si-p type and glass) by RF magnetron sputtering method and annealed at 350 °C post-fabrication and HfO _2 was used as the gate insulation layer (∼50 nm thick). The obtained value of field-effect mobility was greater than 5 cm ^2 Vs ^−1 , with optical bandgap ∼3.07 eV. The two MIS (metal insulator semiconductor) structures were analyzed using I–V and C–V measurements. It is demonstrated that Zinc Nitride is a potential candidate to be used as an active layer in TFT fabrication. The threshold voltages of the device built on Si and glass substrates were obtained as 0.8 volts and 2.6 volts respectively
Consistency analysis for the performance of planar detector systems used in advanced radiotherapy
Purpose: To evaluate the performance linked to the consistency of a-Si EPID and ion-chamber array detectors for dose verification in advanced radiotherapy.Methods: Planar measurements were made for 250 patients using an array of ion chamber and a-Si EPID. For pre-treatment verification, the plans were generated on the phantom for re-calculation of doses. The γ-evaluation method with the criteria: dose-difference (DD) ≤ 3% and distance-to-agreement (DTA) ≤ 3 mm was used for the comparison of measurements. Also, the central axis (CAX) doses were measured using 0.125cc ion chamber and were compared with the central chamber of array and central pixel correlated dose value from EPID image. Two types of statistical approaches were applied for the analysis. Conventional statistics used analysis of variance (ANOVA) and unpaired t-test to evaluate the performance of the detectors. And statistical process control (SPC) was utilized to study the statistical variation for the measured data. Control charts (CC) based on an average , standard deviation ( ) and exponentially weighted moving averages (EWMA) were prepared. The capability index (Cpm) was determined as an indicator for the performance consistency of the two systems.Results: Array and EPID measurements had the average gamma pass rates as 99.9% ± 0.15% and 98.9% ± 1.06% respectively. For the point doses, the 0.125cc chamber results were within 2.1% ± 0.5% of the central chamber of the array. Similarly, CAX doses from EPID and chamber matched within 1.5% ± 0.3%. The control charts showed that both the detectors were performing optimally and all the data points were within ± 5%. EWMA charts revealed that both the detectors had a slow drift along the mean of the processes but was found well within ± 3%. Further, higher Cpm values for EPID demonstrate its higher efficiency for radiotherapy techniques.Conclusion: The performances of both the detectors were seen to be of high quality irrespective of the radiotherapy technique. Higher Cpm values for EPID indicate its higher efficiency than array.</p
Validation of an integrated patient positioning system: Exactrac and iViewGT on Synergy Platform
Purpose: Evaluation of the newly integrated system for its validation and designing a quality assurance frame work to assess its geometrical, radiological and mechanical accuracy.Methods: Isocentric accuracy of two independent imaging modalities, kV based ExacTrac and MV based iViewGT was evaluated using Winston-Lutz test. A pelvic humanoid phantom was used for the radiological end-to-end test for its clinical utilization. Image quality for the systems was evaluated using Las Vegas Phantom and ETR-1 plate. The kV system was also assessed for kVp accuracy, kVp - dose linearity, mAs-dose linearity and timer linearity and its accuracy. The system was tested for total filtration and output consistency. Tests for uniformity and noise measurement of kVp accuracy and its reproducibility, linearity test between applied kVp and the x-ray dose, linearity Test between applied mAs and the x-ray dose were also done. Results: Winston-Lutz test gave the isocentric deviation of 0.058 ± 0.015 mm with the average lateral deviation as 0.028 ± 0.021 mm, average longitudinal deviation as 0.032 ± 0.015 mm and average vertical deviation as 0.030 ± 0.016 mm. With the phantom test, the minimum measured displacement of Exactrac positioning was 0.2 ± 0.3 mm, 0.0 ± 0.2 mm and 0.1 ± 0.3 mm in longitudinal, lateral and vertical directions respectively. In image quality test, visible smallest visible hole size seen by both Exactrac and EPID imaging system was 5 mm and can resolve 1.5 lp/mm or better. The image uniformity was found to be 132.9 ± 3.06 pixels for MV images and 139 ± 4.41 pixels for kV images with the associated noise of ≤1% both for 120 kV-20 mAs and 4 MV beam energy of ExacTrac and iViewGT respectively. The uniformity and noise test, measured pixel intensity values for various points on MV and kV images separately were found to agree within ± 1% with respect to the central axis pixel value. The kVp accuracy and its reproducibility were tested for kV imager only. The deviation of kVp was found to be than ± 1% and its precision was seen to be even lesser than ± 0.1%. Linearity test between applied kVp and the x-ray dose and applied mAs and x-ray dose were tested only for the ExacTrac. Both the coefficient of linearity for kVp as well as mAs was found to be < 0.1. Conclusion: It is feasible to install ExacTrac imaging system with an Elekta linear accelerator. Both the imaging systems were found to be compatible in terms of image quality test and isocentric accuracy and can be used for the patient imaging in the same Linear accelerator.-----------------------------Cite this article as: Jassal K, Munshi A, Sarkar B, Paul S, Sharma A, Mohanti BK, Ganesh T, Chougule A, Sachdev K. Validation of an integrated patient positioning system: Exactrac and iViewGT on Synergy Platform. Int J Cancer Ther Oncol 2014; 2(2):020212. DOI: 10.14319/ijcto.0202.12</p