30 research outputs found

    Evidence for a Finite Temperature Insulator

    Full text link
    In superconductors the zero-resistance current-flow is protected from dissipation at finite temperatures (T) by virtue of the short-circuit condition maintained by the electrons that remain in the condensed state. The recently suggested finite-T insulator and the "superinsulating" phase are different because any residual mechanism of conduction will eventually become dominant as the finite-T insulator sets-in. If the residual conduction is small it may be possible to observe the transition to these intriguing states. We show that the conductivity of the high magnetic-field insulator terminating superconductivity in amorphous indium-oxide exhibits an abrupt drop, and seem to approach a zero conductance at T<0.04 K. We discuss our results in the light of theories that lead to a finite-T insulator

    Tunneling Spectroscopy and Vortex Imaging in Boron-Doped Diamond

    Get PDF
    We present the first scanning tunneling spectroscopy study of single-crystalline boron doped diamond. The measurements were performed below 100 mK with a low temperature scanning tunneling microscope. The tunneling density of states displays a clear superconducting gap. The temperature evolution of the order parameter follows the weak coupling BCS law with Δ(0)/kBTc1.74\Delta(0)/k_B T_c \simeq 1.74. Vortex imaging at low magnetic field also reveals localized states inside the vortex core that are unexpected for such a dirty superconductor.Comment: 4 pages, 4 figures, replaced with revised versio

    Quantum dots and spin qubits in graphene

    Full text link
    This is a review on graphene quantum dots and their use as a host for spin qubits. We discuss the advantages but also the challenges to use graphene quantum dots for spin qubits as compared to the more standard materials like GaAs. We start with an overview of this young and fascinating field and will then discuss gate-tunable quantum dots in detail. We calculate the bound states for three different quantum dot architectures where a bulk gap allows for confinement via electrostatic fields: (i) graphene nanoribbons with armchair boundary, (ii) a disc in single-layer graphene, and (iii) a disc in bilayer graphene. In order for graphene quantum dots to be useful in the context of spin qubits, one needs to find reliable ways to break the valley-degeneracy. This is achieved here, either by a specific termination of graphene in (i) or in (ii) and (iii) by a magnetic field, without the need of a specific boundary. We further discuss how to manipulate spin in these quantum dots and explain the mechanism of spin decoherence and relaxation caused by spin-orbit interaction in combination with electron-phonon coupling, and by hyperfine interaction with the nuclear spin system.Comment: 23 pages, 10 figures, topical review prepared for Nanotechnolog

    III-V semicondutor nanostructures and iontronics: InAs nanowire-based electric double layer field effect transistors

    No full text
    In the emerging interdisciplinary field of iontronics, ionic motion and arrangement in electrolyte media are exploited to control the properties and functionalities of electronic devices. This approach encompasses a wide range of applications across engineering and physical sciences including solid-state physics, electronics and energy storage. We briefly discuss the use of approaches and techniques characteristic of iontronics in nanoscale devices based on III-V semiconductor nanostructures, a versatile and promising platform for nanoscience and nanotechnology applications. Then, we report and discuss the operation of InAs nanowire-based electrolyte-gated transistors implemented using ionic liquids. We show that the ionic liquid gating outperforms the conventional solid-state back gate, and we compare the current modulation achieved in the same InAs NW using the ionic liquid gate or the back-gate. Finally, we highlight the capability of the liquid electrolyte to drastically change the resistance dependence on temperature in the nanowire. Our results suggest promising strategies toward the advanced field effect control of innovative III-V semiconductor nanowire-based devices for information and communication technologies at large

    Deep earth electrodes in highly resistive soil : frequency behaviour

    No full text
    SIGLEAvailable at INIST (FR), Document Supply Service, under shelf-number : 26165 B, issue : a.1995 n.86 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore