53 research outputs found

    Fast and slow gating are inherent properties of the pore module of the K+ channel Kcv

    Get PDF
    Kcv from the chlorella virus PBCV-1 is a viral protein that forms a tetrameric, functional K+ channel in heterologous systems. Kcv can serve as a model system to study and manipulate basic properties of the K+ channel pore because its minimalistic structure (94 amino acids) produces basic features of ion channels, such as selectivity, gating, and sensitivity to blockers. We present a characterization of Kcv properties at the single-channel level. In symmetric 100 mM K+, single-channel conductance is 114 ± 11 pS. Two different voltage-dependent mechanisms are responsible for the gating of Kcv. “Fast” gating, analyzed by β distributions, is responsible for the negative slope conductance in the single-channel current–voltage curve at extreme potentials, like in MaxiK potassium channels, and can be explained by depletion-aggravated instability of the filter region. The presence of a “slow” gating is revealed by the very low (in the order of 1–4%) mean open probability that is voltage dependent and underlies the time-dependent component of the macroscopic current

    New polycyclic dual inhibitors of the wild type and the V27A mutant M2 channel of the influenza A virus with unexpected binding mode

    Get PDF
    Two new polycyclic scaffolds were synthesized and evaluated as anti-influenza A compounds. The 5-azapentacyclo[6.4.0.02,10.03,7.09,11]dodecane derivatives were only active against the wild-type M2 channel in the low-micromolar range. However, some of the 14-azaheptacyclo[8.6.1.02,5.03,11.04,9.06,17.012,16]heptadecane derivatives were dual inhibitors of the wild-type and the V27A mutant M2 channels. The antiviral activity of these molecules was confirmed by cell culture assays. Their binding mode was analysed through molecular dynamics simulations, which showed the existence of distinct binding modes in the wild type M2 channel and its V27A variant

    Selection of Inhibitor-Resistant Viral Potassium Channels Identifies a Selectivity Filter Site that Affects Barium and Amantadine Block

    Get PDF
    BACKGROUND:Understanding the interactions between ion channels and blockers remains an important goal that has implications for delineating the basic mechanisms of ion channel function and for the discovery and development of ion channel directed drugs. METHODOLOGY/PRINCIPAL FINDINGS:We used genetic selection methods to probe the interaction of two ion channel blockers, barium and amantadine, with the miniature viral potassium channel Kcv. Selection for Kcv mutants that were resistant to either blocker identified a mutant bearing multiple changes that was resistant to both. Implementation of a PCR shuffling and backcrossing procedure uncovered that the blocker resistance could be attributed to a single change, T63S, at a position that is likely to form the binding site for the inner ion in the selectivity filter (site 4). A combination of electrophysiological and biochemical assays revealed a distinct difference in the ability of the mutant channel to interact with the blockers. Studies of the analogous mutation in the mammalian inward rectifier Kir2.1 show that the T-->S mutation affects barium block as well as the stability of the conductive state. Comparison of the effects of similar barium resistant mutations in Kcv and Kir2.1 shows that neighboring amino acids in the Kcv selectivity filter affect blocker binding. CONCLUSIONS/SIGNIFICANCE:The data support the idea that permeant ions have an integral role in stabilizing potassium channel structure, suggest that both barium and amantadine act at a similar site, and demonstrate how genetic selections can be used to map blocker binding sites and reveal mechanistic features

    \u3ci\u3eChlorella\u3c/i\u3e virus MT325 encodes water and potassium channels that interact synergistically

    Get PDF
    Fast and selective transport of water through cell membranes is facilitated by water channels. Water channels belonging to the major intrinsic proteins (MIPs) family have been found in all three domains of life, Archaea, Bacteria, and Eukarya. Here we show that Chlorella virus MT325 has a water channel gene, aqpv1, that forms a functional aquaglyceroporin in oocytes. aqpv1 is transcribed during infection together with MT325 kcv, a gene encoding a previously undescribed type of viral potassium channel. Coexpression of AQPV1 and MT325-Kcv in Xenopus oocytes synergistically increases water transport, suggesting a possible concerted action of the two channels in the infection cycle. The two channels operate by a thermodynamically coupled mechanism that simultaneously alters water conductance and driving force for water movement. Considering the universal role of osmosis, this mechanism is relevant to any cell coexpressing water and potassium channels and could have pathological as well as basic physiological relevance

    Electrokinetics of miniature K+ channel: open-state V sensitivity and inhibition by K+ driving force.

    No full text
    Kcv, isolated from a Chlorella virus, is the smallest known K+ channel. When Kcv is expressed in Xenopus oocytes and exposed to 50 mM: [K+](o), its open-state current-voltage relationship (I-V) has the shape of a "tilted S" between -200 and +120 mV. Details of this shape depend on the conditioning voltage (V (c)) immediately before an I-V recording. Unexpectedly, the I-V relationships, recorded in different [K+](o), do intersect. These characteristics are numerically described here by fits of a kinetic model to the experimental data. In this model, the V (c) sensitivity of I-V is mainly assigned to an affinity increase of external K+ association at more positive voltages. The general, tilted-S shape as well as the unexpected intersections of the I-V relationships are kinetically described by a decrease of the cord conductance by the electrochemical driving force for K+ in either direction, like in fast V-dependent blocking by competing ions

    Engineering a ca++-sensitive (bio)sensor from the pore-module of a potassium channel.

    No full text
    Signals recorded at the cell membrane are meaningful indicators of the physiological vs. pathological state of a cell and will become useful diagnostic elements in nanomedicine. In this project we present a coherent strategy for the design and fabrication of a bio-nano-sensor that monitors changes in intracellular cell calcium concentration and allows an easy read out by converting the calcium signal into an electrical current in the range of microampere that can be easily measured by conventional cell electrophysiology apparatus

    Creation of a reactive oxygen species-insensitive Kcv channel.

    No full text
    The current of the minimal viral K(+) channel Kcv(PCBV-1) heterologously expressed in Xenopus oocytes is strongly inhibited by reactive oxygen species (ROS) like H(2)O(2). Possible targets for the ROS effect are two cysteines (C53 and C79) and four methionines (M1, M15, M23, and M26). The C53A/C79A and M23L/M26L double mutations maintained the same ROS sensitivity as the wild type. However, M15L as a single mutant or in combination with C53A/C79A and/or M23L/M26L caused a complete loss of sensitivity to H(2)O(2). These results indicate a prominent role of M15 at the cytosolic end of the outer transmembrane helix for gating of Kcv(PCBV-1). Furthermore, even though the channel lacks a canonical voltage sensor, it exhibits a weak voltage sensitivity, resulting in a slight activation in the millisecond range after a voltage step to negative potentials. The M15L mutation inverts this kinetics into an inactivation, underlining the critical role of this residue for gating. The negative slope of the I-V curves of M15L is the same as in the wild type, indicating that the selectivity filter is not involved

    Engineering a Ca++-Sensitive (Bio)Sensor from the Pore-Module of a Potassium Channel

    No full text
    Signals recorded at the cell membrane are meaningful indicators of the physiological vs. pathological state of a cell and will become useful diagnostic elements in nanomedicine. In this project we present a coherent strategy for the design and fabrication of a bio-nano-sensor that monitors changes in intracellular cell calcium concentration and allows an easy read out by converting the calcium signal into an electrical current in the range of microampere that can be easily measured by conventional cell electrophysiology apparatus
    • …
    corecore