170 research outputs found
Fabrication of Boron Nitride Fibers by Force Spinning Method
The unique multifunctional properties of boron nitride (BN) nanomaterials are identified as a parameter that would revolutionize electric propulsion in Aeronautics due to the lightweight ceramic with chemical inertness, high strength, high electrical resistivity and high thermal conductivity. Hexagonal BN (h-BN) nanofibers will enable new high-performance fibers that can be used in ceramic or polymer matrix composites, or thin films to provide revolutionary multifunctional ceramics for extreme environments and structures. Polymer derived h-BN materials have been previously demonstrated, providing an avenue to tailor properties of the ceramic end product. This effort also uses forcespinning (FS) technology that produces continuous non-woven nanofibers in a range of diameters depending on the processing parameters with a large production rate of 1 g/min allowing for manufacturing scale production. FTIR, SEM, TGA and XRD were used to characterize the materials in each processing steps
The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding
Abstract Background In Drosophila embryos, many biochemically and functionally unrelated transcription factors bind quantitatively to highly overlapping sets of genomic regions, with much of the lowest levels of binding being incidental, non-functional interactions on DNA. The primary biochemical mechanisms that drive these genome-wide occupancy patterns have yet to be established. Results Here we use data resulting from the DNaseI digestion of isolated embryo nuclei to provide a biophysical measure of the degree to which proteins can access different regions of the genome. We show that the in vivo binding patterns of 21 developmental regulators are quantitatively correlated with DNA accessibility in chromatin. Furthermore, we find that levels of factor occupancy in vivo correlate much more with the degree of chromatin accessibility than with occupancy predicted from in vitro affinity measurements using purified protein and naked DNA. Within accessible regions, however, the intrinsic affinity of the factor for DNA does play a role in determining net occupancy, with even weak affinity recognition sites contributing. Finally, we show that programmed changes in chromatin accessibility between different developmental stages correlate with quantitative alterations in factor binding. Conclusions Based on these and other results, we propose a general mechanism to explain the widespread, overlapping DNA binding by animal transcription factors. In this view, transcription factors are expressed at sufficiently high concentrations in cells such that they can occupy their recognition sequences in highly accessible chromatin without the aid of physical cooperative interactions with other proteins, leading to highly overlapping, graded binding of unrelated factors
Hepatitis C virus quasispecies and pseudotype analysis from acute infection to chronicity in HIV-1 co-infected individuals
HIV-1 infected patients who acquire HCV infection have higher rates of chronicity and liver disease progression than patients with HCV mono-infection. Understanding early events in this pathogenic process is important. We applied single genome sequencing of the E1 to NS3 regions and viral pseudotype neutralization assays to explore the consequences of viral quasispecies evolution from pre-seroconversion to chronicity in four co-infected individuals (mean follow up 566 days). We observed that one to three founder viruses were transmitted. Relatively low viral sequence diversity, possibly related to an impaired immune response, due to HIV infection was observed in three patients. However, the fourth patient, after an early purifying selection displayed increasing E2 sequence evolution, possibly related to being on suppressive antiretroviral therapy. Viral pseudotypes generated from HCV variants showed relative resistance to neutralization by autologous plasma but not to plasma collected from later time points, confirming ongoing virus escape from antibody neutralization
Development and Evolution of the Muscles of the Pelvic Fin
Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod transition onto land. Here, we determine the developmental mechanisms of pelvic fin muscle formation in living fish species at critical points within the vertebrate phylogeny and reveal a stepwise modification from a primitive to a more derived mode of pelvic fin muscle formation. A distinct process generates pelvic fin muscle in bony fishes that incorporates both primitive and derived characteristics of vertebrate appendicular muscle formation. We propose that the adoption of the fully derived mode of hindlimb muscle formation from this bimodal character state is an evolutionary innovation that was critical to the success of the tetrapod transition
- …