159 research outputs found

    The emerging role of the endocannabinoid system in cardiovascular disease

    Get PDF
    Endocannabinoids are endogenous bioactive lipid mediators present both in the brain and various peripheral tissues, which exert their biological effects via interaction with specific G-protein-coupled cannabinoid receptors, the CB1 and CB2. Pathological overactivation of the endocannabinoid system (ECS) in various forms of shock and heart failure may contribute to the underlying pathology and cardiodepressive state by the activation of the cardiovascular CB1 receptors. Furthermore, tonic activation of CB1 receptors by endocannabinoids has also been implicated in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes, such as plasma lipid alterations, abdominal obesity, hepatic steatosis, inflammation, and insulin and leptin resistance. In contrast, activation of CB2 receptors in immune cells exerts various immunomodulatory effects, and the CB2 receptors in endothelial and inflammatory cells appear to limit the endothelial inflammatory response, chemotaxis, and inflammatory cell adhesion and activation in atherosclerosis and reperfusion injury. Here, we will overview the cardiovascular actions of endocannabinoids and the growing body of evidence implicating the dysregulation of the ECS in a variety of cardiovascular diseases. We will also discuss the therapeutic potential of the modulation of the ECS by selective agonists/antagonists in various cardiovascular disorders associated with inflammation and tissue injury, ranging from myocardial infarction and heart failure to atherosclerosis and cardiometabolic disorder

    Neutrophils in Post-myocardial Infarction Inflammation: Damage vs. Resolution?

    Get PDF
    Inflammation not only plays a crucial role in acute ischemic cardiac injury, but also contributes to post-infarction repair and remodeling. Traditionally, neutrophils have been merely considered as detrimental in the setting of an acute myocardial infarction. However, recently published studies demonstrated that neutrophils might also play an important role in cardiac repair by regulating reparative processes. An emerging concept is that different neutrophil subsets exist, which might exhibit separate functional properties. In support of the existence of distinct neutrophil subsets in the ischemic heart, transcriptional changes in cardiac neutrophils have been reported within the first few days after myocardial infarction. In addition, there is an increasing awareness of sex-specific differences in many physiological and pathophysiological responses, including cardiovascular parameters and inflammation. Of particular interest in this context are recent experimental data dissecting sex-specific differences in neutrophil signaling after myocardial infarction. Unraveling the distinct and possibly stage-dependent properties of neutrophils in cardiac repair may provide new therapeutic strategies in order to improve the clinical outcome for myocardial infarction patients. This review will briefly discuss recent advances in our understanding of the neutrophil functional repertoire and emerging insights of sex-specific differences in post-myocardial infarction inflammatory responses

    Neutrophils in Post-myocardial Infarction Inflammation: Damage vs. Resolution?

    Get PDF
    Inflammation not only plays a crucial role in acute ischemic cardiac injury, but also contributes to post-infarction repair and remodeling. Traditionally, neutrophils have been merely considered as detrimental in the setting of an acute myocardial infarction. However, recently published studies demonstrated that neutrophils might also play an important role in cardiac repair by regulating reparative processes. An emerging concept is that different neutrophil subsets exist, which might exhibit separate functional properties. In support of the existence of distinct neutrophil subsets in the ischemic heart, transcriptional changes in cardiac neutrophils have been reported within the first few days after myocardial infarction. In addition, there is an increasing awareness of sex-specific differences in many physiological and pathophysiological responses, including cardiovascular parameters and inflammation. Of particular interest in this context are recent experimental data dissecting sex-specific differences in neutrophil signaling after myocardial infarction. Unraveling the distinct and possibly stage-dependent properties of neutrophils in cardiac repair may provide new therapeutic strategies in order to improve the clinical outcome for myocardial infarction patients. This review will briefly discuss recent advances in our understanding of the neutrophil functional repertoire and emerging insights of sex-specific differences in post-myocardial infarction inflammatory responses

    Insulin Resistance: A Proinflammatory State Mediated by Lipid-Induced Signaling Dysfunction and Involved in Atherosclerotic Plaque Instability

    Get PDF
    The dysregulation of the insulin-glucose axis represents the crucial event in insulin resistance syndrome. Insulin resistance increases atherogenesis and atherosclerotic plaque instability by inducing proinflammatory activities on vascular and immune cells. This condition characterizes several diseases, such as type 2 diabetes, impaired glucose tolerance (IGT), impaired fasting glucose (IFG), obesity, hypertension, dyslipidemia, and other endocrinopathies, but also cancer. Recent studies suggest that the pathophysiology of insulin resistance is closely related to interferences with insulin-mediated intracellular signaling on skeletal muscle cells, hepatocytes, and adipocytes. Strong evidence supports the role of free fatty acids (FFAs) in promoting insulin resistance. The FFA-induced activation of protein kinase C (PKC) delta, inhibitor kappaB kinase (IKK), or c-Jun N-terminal kinase (JNK) modulates insulin-triggered intracellular pathway (classically known as PI3-K-dependent). Therefore, reduction of FFA levels represents a selective target for modulating insulin resistance

    The Immune Response Is Involved in Atherosclerotic Plaque Calcification: Could the RANKL/RANK/OPG System Be a Marker of Plaque Instability?

    Get PDF
    Atherogenesis is characterized by an intense inflammatory process, involving immune and vascular cells. These cells play a crucial role in all phases of atherosclerotic plaque formation and complication through cytokine, protease, and prothrombotic factor secretion. The accumulation of inflammatory cells and thus high amounts of soluble mediators are responsible for the evolution of some plaques to instable phenotype which may lead to rupture. One condition strongly associated with plaque rupture is calcification, a physiopathological process orchestrated by several soluble factors, including the receptor activator of nuclear factor (NF)ĪŗB ligand (RANKL)/receptor activator of nuclear factor (NF)ĪŗB (RANK)/osteoprotegerin (OPG) system. Although some studies showed some interesting correlations with acute ischemic events, at present, more evidences are needed to evaluate the predictive and diagnostic value of serum sRANKL and OPG levels for clinical use. The major limitation is probably the poor specificity of these factors for cardiovascular disease. The identification of tissue-specific isoforms could increase the importance of sRANKL and OPG in predicting calcified plaque rupture and the dramatic ischemic consequences in the brain and the heart

    Does conversion to conservation tillage really increase soil organic carbon stocks in organic arable farming?

    Get PDF
    Aggravation of weather extremes increases awareness of climate change consequences. Mitigation options are in demand which aim to reduce the atmospheric concentration of greenhouse gases. Amongst others, conversion from ploughing to conservation tillage is argued to increase soil organic carbon (SOC) stocks. Yet, main findings of reviews and meta-analyses comparing SOC stocks between tillage systems show different results: from a significant increase of SOC stocks to the question if there is any effect at all. Reasons are a sampling bias as in many campaigns only topsoil layers are assessed and horizons thickness is not considered adequately, different methods for SOC and bulk density determination, and the comparison of SOC stocks based on equivalent soil masses instead of equal sampling depths. In order to address these limitations, we initiated the SOCORT consortium (Soil Organic Carbon in Organic Reduced Tillage) ā€“ an international network of nine agronomical long-term trials. All trials represent common mixed organic farming systems of the respective region with organic fertilisation and crop rotations including leys. Climatic conditions are similar, but age and soil texture vary (7 to 21 years and sandy to clayey soils). A common sampling campaign was consequently elaborated to answer the question if the combination of conservation tillage and organic farming can really increase SOC stocks. Undisturbed soil cores were taken with driving hammer probes (8 cm in diameter) to a maximum depth of 100 cm. Each core was divided in the increments 0-30, 30-50, 50-70, 70-100 cm. The topsoil layer (0-30 cm) was further divided into the different tillage depths of the respective trial. All samples were analysed in the same laboratory for bulk density, organic carbon content, pH and texture. We compiled the yields for each trial to assess carbon inputs. The SOCORT consortium in combination with the common sampling campaign will entangle the driving factors of carbon sequestration through reduced tillage and add important knowledge on carbon dynamics in agro-ecosystems

    The Clubroot Pathogen (\u3ci\u3ePlasmodiophora brassicae\u3c/i\u3e) Influences Auxin Signaling to Regulate Auxin Homeostasis in Arabidopsis

    Get PDF
    The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1) in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA) and transcription factors (ARF). As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3), the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA) resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae

    The Clubroot Pathogen (\u3ci\u3ePlasmodiophora brassicae\u3c/i\u3e) Influences Auxin Signaling to Regulate Auxin Homeostasis in Arabidopsis

    Get PDF
    The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1) in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA) and transcription factors (ARF). As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3), the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA) resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae

    Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype

    Get PDF
    Aims Acute myocardial infarction (MI) is the leading cause of mortality worldwide. Anti-inflammatory strategies to reduce neutrophil-driven acute post-MI injury have been shown to limit acute cardiac tissue damage. On the other hand, whether neutrophils are required for resolving post-MI inflammation and repair is unknown. Methods and results We show that neutrophil-depleted mice subjected to MI had worsened cardiac function, increased fibrosis, and progressively developed heart failure. Flow cytometry of blood, lymphoid organs and digested hearts revealed reduced numbers of Ly6C(high) monocytes in infarcts of neutrophil-depleted mice, whereas the number of macrophages increased, which was paralleled by reduced splenic Ly6C(high) monocyte mobilization but enhanced proliferation of cardiac macrophages. Macrophage subtype analysis revealed reduced cardiac expression of M1 markers, whereas M2 markers were increased in neutrophil-depleted mice. Surprisingly, we found reduced expression of phagocytosis receptor myeloid-epithelial-reproductive tyrosine kinase, a marker of reparative M2c macrophages which mediate clearance of apoptotic cells. In agreement with this finding, neutrophil-depleted mice had increased numbers of TUNEL-positive cells within infarcts. We identified neutrophil gelatinase-associated lipocalin (NGAL) in the neutrophil secretome as a key inducer of macrophages with high capacity to engulf apoptotic cells. The cardiac macrophage phenotype in neutrophil-depleted mice was restored by administration of neutrophil secretome or NGAL. Conclusion Neutrophils are crucially involved in cardiac repair after MI by polarizing macrophages towards a reparative phenotype. Therapeutic strategies to reduce acute neutrophil-driven inflammation after MI should be carefully balanced as they might interfere with the healing response and cardiac remodelling
    • ā€¦
    corecore