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Abstract: The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora 

brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as 

symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, 

we describe that two different classes of auxin receptors, the TIR family and the auxin 

binding protein 1 (ABP1) in Arabidopsis thaliana are transcriptionally upregulated upon 

gall formation. Mutations in the TIR family resulted in more susceptible reactions to the 

root pathogen. As target genes for the different pathways we have investigated the 

transcriptional regulation of selected transcriptional repressors (Aux/IAA) and transcription 

factors (ARF). As the TIR pathway controls auxin homeostasis via the upregulation of 

some auxin conjugate synthetases (GH3), the expression of selected GH3 genes was also 

investigated, showing in most cases upregulation. A double gh3 mutant showed also 
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slightly higher susceptibility to P. brassicae infection, while all tested single mutants did 

not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell 

elongation the effect of potassium channel blockers on clubroot formation was investigated. 

Treatment with tetraethylammonium (TEA) resulted in less severe clubroot symptoms. 

This research provides evidence for the involvement of two auxin signaling pathways in 

Arabidopsis needed for the establishment of the root galls by P. brassicae. 

Keywords: ABP1; Arabidopsis thaliana; auxin homeostasis; auxin receptors;  

clubroot disease; GH3 proteins; Plasmodiophora brassicae; potassium channel inhibitors; 

tetraethylammonium; TIR1 

 

1. Introduction 

The clubroot disease of the Brassicaceae is one of the most damaging diseases within this plant 

family [1]. The growth of clubroot-infected plants is stunted compared to healthy plants and the root 

system shows typical gall formation. At maturity, the galls turn brown and soft as the tissue 

decomposes so that the spores are liberated from the plant tissue. These spores can remain infectious 

for at least 15 years [1]. This economically important pathogen infects a range of crop plants within the 

Brassicaceae. In addition, Arabidopsis thaliana is a good host, making molecular and functional 

studies feasible [2]. The disease is still difficult to control by either chemical or cultural means [3]. 

Obligate biotrophic plant pathogens like Plasmodiophora brassicae establish an intricate interaction 

with their host during at least some parts of the infection process, because of their dependence on host 

carbon sources. They influence host physiology and alter host regulatory networks over a wide range 

of its genome. Especially the plant's hormonal balance is altered by this interaction [4]. The changes in 

host hormone metabolism are connected to the intracellular life style of this protist.  

The infection process of plants by P. brassicae consists of two phases: (1) the primary phase, which 

is restricted to root hairs and (2) the secondary phase, which occurs in the cortex and stele of roots and 

hypocotyl and leads to abnormal development [5]. Especially during this later phase the host root 

responds to infection by increased cell division rates followed by hypertrophy of infected cells. These 

harbor first the plasmodia of P. brassicae, probably dividing together with the host cells. Later, the 

plasmodia grow and the host cell increases concomitantly in size. These enlarged host cells can reach 

at least ten times the size of uninfected cells [6]. While cell division has been attributed to the action of 

auxins and cytokinins [7], cell enlargement has been so far linked exclusively to higher auxin 

concentrations [8] and synthesis [9,10]. The induction of auxin in Arabidopsis correlates with an 

increase in seedling growth and Xyloglucan-Endo-Transferase/Hydrolase leading to cell elongation [8]. 

In addition, a microarray [7] revealed that genes involved in cell division and expansion such as cell 

cycle genes and expansins are upregulated, especially at the first analyzed time point of the disease  

(10 days after inoculation) [2]. Consequently, altering hormone concentrations has led to reduced 

clubroot symptoms [7,11]. Despite a long lasting research on hormonal events, the exact signaling and 

control mechanisms are still not known. Therefore, it was investigated, which auxin signaling 

pathway(s) contribute to clubroot formation.  
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Auxin signaling is regulated by two types of receptors: the nuclear-localized TIR/AFB family [12,13] 

and the plasma membrane associated auxin binding protein 1 (ABP1) [14] (Figure 1). The nuclear 

signaling pathway leads to the activation of the transcriptional response via auxin perception by the  

F-box protein TIR1 (transport inhibitor response 1). F-box proteins function as substrate recognition 

modules for the multisubunit complex of ubiquitin ligases (also called Skp1-Cullin1-F-box protein 

(SCF); here SCF
TIR

) [15]. The F-box protein TIR1 is the receptor, which recruits, by binding to auxin, 

the protein target that is designated for degradation by ubiquitination [13,16]. Polyubiquitinated 

proteins are then transferred into the 26S proteasome and degraded.  

Figure 1. Model for the auxin-dependent degradation of Aux/IAA proteins via the TIR 

receptor family to induce gene expression by auxin in Arabidopsis and the possible 

involvement of P. brassicae in this process (indicated in red). The role for a second  

auxin receptor, ABP1, might lie in processes at the plasma membrane, leading in turn to 

cell elongation.  

 

 

Auxin-mediated transcriptional response is controlled by negative (Aux/IAA) and mainly positive 

(ARF) regulators [16]. ARFs (auxin response factors) bind to the auxin responsive elements (AuxRe) in 

respective promoters of auxin-inducible genes for transcriptional activation, but some ARFs are also 

inhibitors [17]. Both, Aux/IAAs and ARFs are present as large families. The Aux/IAA proteins bind to the 

ARFs through homologous domains in both proteins and thereby repress auxin-regulated transcription [18]. 
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The Aux/IAA proteins are short-lived, because they are degraded via the SCF
TIR

 pathway and their 

degradation is promoted by auxin. Many mutations in Aux/IAA genes are stabilizing the resulting protein, 

because degradation domains are affected and thus they constitute gain-of-function mutations [18].  

Among the targets of ARFs are genes encoding proteins involved in the regulation of auxin 

homeostasis. The IAA amino acid conjugate synthetases (GH3) have been first recognized as  

auxin-induced genes [19]. Later it was discovered that it is a large gene family and that some proteins 

are involved in the conjugation of IAA to various amino acids [20]. GH3 proteins are involved in 

various responses of plants to abiotic and biotic stresses [21]. Especially the protein GH3.5 seems to 

play various roles in addition to the synthesis of IAA amino acid conjugates. It also conjugates the 

plant defense signal salicylic acid to amino acids [22] and is involved in the synthesis of the 

Arabidopsis phytoalexin camalexin [23]. One family member, GH3.11 (JAR1), catalyzes the formation 

of the isoleucine conjugate of jasmonic acid (JA) [24]. Contrary to the inactivation of IAA by conjugation, 

the isoleucine conjugate of JA is active, because it alone binds to the JA receptor COI1 [25].  

ABP1 has been shown to control events at the plasma membrane by the regulation of membrane 

fluxes leading in consequence to cell elongation. ABP1 has an ER retention sequence, but it is 

hypothesized that for action at the plasma membrane some protein ―escapes‖ its intracellular location [14]. 

In addition, there is no transmembrane sequence present in ABP1, which led to the speculation that a 

docking protein could be responsible for anchoring ABP1 in the membrane (Figure 1). ABP1 is 

involved in protoplast swelling [26], which is an indication for its role in planta in cell elongation. In 

addition, many growth processes seem to rely on ABP1 activity, for example an ABP1 knockout 

mutant is embryo lethal [27]. Downstream of ABP1 the action of ATPases and ion channels was 

postulated. Both, a H
+
-ATPase and K

+
-channels are needed for the auxin-mediated cell elongation 

response [14]. K
+
-channels necessary for the osmotic changes occurring during cell elongation can be 

induced by auxin in maize and Arabidopsis [28]. In contrast, the TIR pathway can be responsible for 

the increased gene expression for these channels in response to auxin, linking the two pathways.  

Initial evidence for the involvement of the TIR pathway in the clubroot disease came from  

Alix et al. [29] who reported the partial resistance of the Arabidopsis axr3-1 mutant. The AXR3 gene 

encodes the transcriptional repressor IAA17, a member of the Aux/IAA family. The transcript is 

stabilized in the mutant, so that the transcriptional activation cannot take place. Here, we have 

investigated the contribution of both auxin signaling pathways mentioned above to the clubroot 

symptom development. In addition, targets of both pathways were functionally investigated for their 

roles during disease progression. 

2. Results and Discussion 

2.1. The Auxin Signaling Receptors TIR1 and AFB1 Are Transcriptionally Upregulated in Clubroots 

The role of plant hormones during the infection of Brassicaceae roots with the obligate biotrophic 

protist Plasmodiophora brassicae has been studied over the decades. The increase in auxin and 

cytokinin is well-documented and experimental evidence for the biosynthetic pathways leading to 

these increases have been obtained [4]. The role of auxin transport is less well understood, but there is 

also experimental evidence that IAA transport plays a role in clubroot formation [10,30]. In contrast, 
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the signal transduction pathways for IAA and their subsequent targets have not well been studied. Only 

a few experimental data on the involvement of genes from the auxin signaling pathways are available. 

The axr3 mutant is more resistant to P. brassicae, while for the tir1 mutant no phenotypical changes 

after infection with the clubroot pathogen were found [29].  

As Arabidopsis thaliana is a good host for P. brassicae we used the ATH1 Affymetrix 22K 

microarray to investigate host gene expression during the development of the disease on a broader 

basis [7] and focused on genes involved in the regulation of the auxin pool and auxin-induced gene 

expression (Tables S1 and S2). The data were also compared to other publicly available microarray 

datasets to analyze additional features, such as auxin treatments (Table S2) [31].  

As mentioned, IAA is perceived by a family of F-box proteins called the TIR1 (transport inhibitor 

response1)/AFB (auxin signaling F-box protein). Phylogenetic studies showed that these proteins fall into 

four clades in flowering plants [32]. TIR1 and AFB1 show high sequence homology to each other [12], 

whereas the other AFBs are more distantly related. For the auxin receptors investigated here the binding 

of IAA was demonstrated [32]. One group of AFBs was found to negatively regulate the auxin response, 

because loss of AFB4 resulted in growth phenotypes consistent with auxin hypersensitivity [33]. In 

addition, the AFB4 clade was identified as the major target of auxinic herbicides [33]. 

Our microarray analysis showed an upregulation of AFB1 during clubroot (24 dai), so the 

expression of the TIR1/AFB1 pair of auxin receptors was analyzed. Using RT-PCR an upregulation for 

TIR1 and AFB1 during later time points (24 and 28 days after inoculation; dai) of the disease 

development is shown (Figure 2).  

Figure 2. (A–C) Expression of three representatives of auxin receptors from the TIR 

family during the clubroot disease. TIR1, AFB1, and AFB2 expression was normalized to 

the gene encoding the mitosis protein YLS8 (YELLOW-LEAF-SPECIFIC GENE 8) of 

Arabidopsis. Values are mean of at least three independent experiments ± SE. Significant 

differences are indicated by an asterisk (p ≤ 0.05). (D) Relative expression of the  

P. brassicae actin gene during the development of the root gall.  

 



Plants 2013, 2 731 

 

 

This is a time point when galls are clearly visible and cell division, as well as cell elongation, occur 

in the infected roots [7]. Cell elongation is connected to the presence of plasmodia containing cells and 

high auxin concentrations have been hypothesized for this cell type to occur. On the contrary, a 

downregulation of AFB2 transcript was found at most time points (Figure 2A). The presence of  

P. brassicae was detected using the relative transcription of actin from the pathogen (PbAct)  

(Figure 2B). These data suggest that auxin signaling is dependent on the TIR pathway during the time 

frame where the major gall development occurs.  

Single mutants in the TIR1, AFB1, and a double mutant in the AFB1 and AFB2 genes were then 

tested for phenotypic changes after infection with the clubroot pathogen (Figures 3 and 4).  

Figure 3. Mutant analysis of tir1, afb1, and afb1 afb2 double mutant with respect to their 

aboveground phenotype 28 days after inoculation with P. brassicae. The shoot growth of 

wild type and three different mutant plants is shown after inoculation with three different 

spore densities. The experiment was reproduced three times and the results of a typical 

dataset shown. The bar represents 4 cm and the size is the same for all panels.  

 

High inoculum densities were used to investigate tolerance or resistance phenotypes, because plants, 

which show a grade of tolerance against P. brassicae, should show a low disease index compared to wild 

type plants with a high index. On the contrary, low inoculum densities can show higher susceptibility. 

While the disease index here is expected to be low for wild type plants, mutant lines with a higher index 

are regarded as more susceptible. At different inoculum densities, no differences in aboveground 

phenotypes of single mutants could be observed compared to the wild type. This is in accordance with 

observations made by Alix et al. [29] for the tir1 mutant. The phenotypic changes concerning growth 

patterns are only subtle for single receptor mutants [34]. Creating multiple mutants resulted in stronger 

growth defect phenotypes depending on the tissue, which resulted in complex phenotypes obtained for 
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different mutant combinations [32,34]. Under the biotic stress conditions investigated here, a double 

mutant afb1 afb2 showed alterations in phenotype, i.e., it was more susceptible to clubroot (Figure 3), 

because shoot growth was inhibited already at lower spore densities.  

Differences in growth could be quantified using the shoot index, even though variations were quite 

high (Figure 4). The disease index (DI) as a parameter for the severity of the disease was similar at 

higher spore densities (10
5
 and 10

6
 spores mL

−1
) used as inoculum, whereas some differences could be 

observed at lower spore densities (10
4
 spores mL

−1
), indicating by a higher DI that all mutants were 

more susceptible than wild type (Figure 4).  

Figure 4. Mutant analysis of tir1, afb1, and afb1 afb2 double mutant with respect to their 

gall development 28 days after inoculation with P. brassicae. Disease index (DI) and Shoot 

index (SI) of tir1, afb1, and afb1 afb2 mutants 28 dai. Both values are measures for disease 

severity. The infection was done with different spore densities. For each experiment at 

least 60 plants per mutant and inoculation condition were analyzed. Values are means ± SE 

of three independent experiments. The asterisk indicates a significant difference at α = 0.05, 

based on Kruskal-Wallis analysis and mean rank comparison.  

 

Higher order mutants were not considered for testing in response to clubroot due to their dwarfed 

phenotype. These data suggest a role for the F-box type auxin receptors for clubroot development. The 

higher susceptibility of the double mutants can be interpreted as missing downstream gene expression, 

for example the GH3 genes, which encode proteins involved in auxin homeostasis (see Section 2.3). 

Other auxin-induced genes could be involved directly in cell cycle regulation or cell expansion, which 

is an important factor in club development [2,35]. Finally, potassium channels could be transcriptionally 

regulated by the TIR signaling pathway (see Section 2.5). 

2.2. Aux/IAA and ARF Genes Are Differentially Regulated during Clubroot  

On the basis of microarray results (Table S1) some genes from the transcriptional repressor family 

Aux/IAA and the transcriptional activators ARFs were chosen for further analysis (Figure 5). ARF5 

encodes the MONOPTEROS (MP) protein [36]. Interestingly, triple tir afb mutants show a similar 

embryo phenotype as the mp mutant [37]. ARF7 is a positive regulator of lateral root formation [38]. 

Also, ARF5 and ARF7 partially overlap in their function [36]. ARF5 and ARF7 gene expression showed 
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downregulation in infected roots (Figure 5), confirming the results from the microarray (Table S1) [7]. 

Downregulation of a positive regulator of lateral root formation ARF7 could be interpreted as 

disturbance of the ordered tissue layers of roots and a reduction of lateral roots in favor of 

undifferentiated gall formation. In accordance with this hypothesis, it was shown that a cell division 

reporter, CYCB1;1 was activated in patches after P. brassicae infection in roots not yet showing galls, 

whereas in controls the marker was confined to the root meristems of main and lateral roots [35]. 

Repression of ARF5 might similarly result in undifferentiated, instead of organized tissue layers, 

depending on the target genes regulated by this ARF also via different players. ARF5 is involved in the 

regulation of embryonic roots [39], thus, it might play a role in suppression of root formation in galls. 

Figure 5. Expression of selected transcriptional repressors (Aux/IAA) and activators 

(ARF) of the TIR signaling pathway during the clubroot disease. Expression was 

normalized to the YLS8 (see Figure 2) of Arabidopsis. The presence of P. brassicae is 

shown by the transcript of the actin gene. c = control roots; i = infected roots. 

 

ARF8, in accordance with the microarray data, showed a slight transcriptional upregulation at some 

time points during disease progression (Figure 5). ARF8 was shown to positively regulate GH3.5 [40], 

a member of the auxin conjugate synthetases (see Section 2.3). Also GH3.5 transcripts were 

upregulated at some time points (Figure 7B). GH3.5 belongs to the family members, which conjugate 

IAA to amino acids [20], but also conjugates salicylic acid (SA) with amino acids [22] and it is 

involved in the synthesis of the Arabidopsis phytoalexin camalexin [23]. In addition, the expression of 

three other GH3 genes (GH3.3, GH3.6, GH3.17) was decreased in arf8 mutants, whereas in ARF8 

overexpressors the same genes showed an increased expression [41]. ARF8 might therefore be an 

important regulator for the concentration of several signaling molecules in plant defense reactions in 

addition to IAA concentrations. 

Transcriptional responses of two Aux/IAA genes were also determined. The gene expression was 

normalized on the reference gene YLS8 from the host and P. brassicae was determined by relative 

expression of its actin gene. IAA7 was upregulated in transcription in infected roots, also confirming 

the microarray data. Transcripts of IAA28 were always higher in control roots compared to infected 

roots (Figure 5), again indicating good correlation between RT-PCR data and microarray results. 
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Interestingly, another Aux/IAA gene, IAA2, was shown to be upregulated using a promoter::GUS 

fusion in previous work [10], whereas the microarray points to strong downregulation.  

IAA28 is also associated with the (negative) regulation of lateral root formation [42]. As with 

lateral root formation, the hyperplasia observed in root galls starts from the pericycle [43]. Therefore, 

the differential regulation of genes in cluboots, which are also involved in the regulation of lateral root 

development could point to a similar role in root development and club formation. In a healthy plant 

cell-specific auxin accumulation patterns in xylem pole cells lead to the degradation of the IAA28 

repressor protein and determination of precursor cells for lateral root initiation [42]. In clubroots the 

downregulation of IAA28 might be a prerequisite for re-embryonalization of the pericycle tissue prior 

to increased cell division rates or gall development is initially started by massive lateral root 

development. For IAA7 it has been shown that it can induce growth processes by inhibiting the activity 

of repressing ARFs [44]. This could explain the upregulation of a transcriptional repressor in growing 

root galls in response to auxin. Other ARFs, which have not been the subject of investigation here, for 

example ARF17, are also known to control GH3 transcriptional response, especially that of GH3.2 and 

GH3.3, but not GH3.5 [45].  

Under sub-threshold auxin concentrations the Aux/IAA proteins heterodimerize with the ARF 

transcription factors, thereby repressing auxin-inducible gene expression. P. brassicae could work 

under low auxin conditions in repressing Aux/IAA gene function and thus inducing ARF-dependent 

gene expression of auxin-inducible genes. Under high auxin conditions, auxin binding to the TIR/AFB 

receptors promotes the recruitment of Aux/IAA proteins to the SCF complexes. Subsequent Aux/IAA 

ubiquitinylation and proteasome-mediated degradation results in a decline in Aux/IAA proteins, thus 

de-repressing auxin-inducible gene expression. Therefore, P. brassicae could act by up-regulation of 

the endogenous IAA concentration and use the cellular proteasome machinery to have Aux/IAA 

proteins degraded so that the transcriptional response could take place.  

To find putative downstream target genes of this pathway, the gain-of-function mutant axr2-1 

(iaa7) was used (Figure 6A). This is not an overexpressor line, but the gain-of-function comes from 

the stabilization of the transcript encoding the repressor. We reasoned that gene expression altered in 

this mutant should lead to good candidate genes for further evaluation during the clubroot disease, 

because of the upregulation of IAA7 during gall development. As a basis, the microarray data from 

Siemens et al. [7] and Nakamura et al. [46] on the axr2 mutant were used to test this hypothesis 

(Figure 6B). It was confirmed that IAA7 expression was higher in the axr2 mutant compared to the 

wild type. From other candidate genes chosen the expression of a lipid transfer protein (LTP) 

displayed the expression pattern expected (upregulation), if the gene would be transcriptionally 

regulated by this particular Aux/IAA gene (Figure 6B). Indeed, expression analysis showed that this 

LTP gene was downregulated during clubroot disease development [47]. Furthermore, overexpression 

of this LTP gene in Arabidopsis led to a lower disease index and higher shoot index, both an indication 

for reduced susceptibility to the clubroot pathogen [47]. The result is in accordance with a role for 

LTPs in disease development. This could therefore be a promising approach to further identify target 

genes involved in gall formation, also for other transcriptional regulators of this auxin-signaling pathway. 
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Figure 6. (A) Phenotype of axr2-1 and Col wild type plants. The bar represents 1 cm.  

(B) Using the constitutive repressor mutant axr2-1 (iaa7) to identify putative target genes 

of the pathway regulated by IAA7 at 28 and 37 days after germination (d). Expression was 

normalized to YLS8 of Arabidopsis. The arrow points to a putative target gene, which 

shows the expected regulation pattern. ABP1: auxin binding protein 1; ExpA17: expansin 

A17; LTP: lipid transfer protein. 

 

2.3. Several Members of the GH3 Family Are Differentially Regulated during Clubroot Formation  

Among the possible target of the ARF transcription factors are GH3 genes [40]. Therefore, we have 

investigated the transcriptional regulation of selected GH3 genes. These were chosen according to the 

results in the microarray analysis (Table S2). GH3.5 was chosen because of its multiple roles in IAA 

and SA conjugation and also camalexin biosynthesis (Figure 7A). The root tissue specific expression 

patterns of the selected GH3 genes are shown in Figure S1 [48].  

The regulation of auxin concentrations during the development of plants is of importance, because 

IAA in low concentrations stimulates growth and development, whereas higher concentrations can be 

toxic to the plant [49]. Therefore, tight control of IAA concentration is necessary for proper plant 

development. If this homeostasis is disrupted, as in clubroot formation, the proper development of 

tissues cannot occur. Plants contain low amounts of IAA as the free acid, the active form, and most of 

their IAA in conjugated forms [50]. These conjugates are thought to be involved in (a) transport of 

IAA within the plant; (b) the storage and subsequent reuse of IAA; (c) protection of IAA from 

enzymatic destruction; (d) components of a homeostatic mechanism for control of IAA concentrations; 

and (e) as an entry route into the subsequent catabolism of IAA [51]. Two main types of conjugated 

molecules exist: the amide-linked IAA forms bound to one or more amino acids and the ester-linked 

forms primarily bound to sugar(s).  

The ILR1-like IAA amidohydrolase gene family is involved in the regulation of free IAA 

concentrations. While for Arabidopsis no differential regulation for this gene family during clubroot 

has been found, the genes encoding for proteins involved in the conjugation of IAA to amino acids and 

thereby inactivating the free auxin are strongly upregulated in root galls after P. brassicae infection. 

The results showed that especially the members GH3.2, GH3.3, GH3.4, GH3.5, GH3.14, and GH3.17 
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were upregulated at most time points investigated (Figure 7B). The genes for GH3.8, GH3.13, and 

GH3.20 were expressed in roots at very low concentrations. 

Figure 7. (A) Reactions from Tryptophan, IAA, JA and SA to their respective metabolites 

catalyzed by different GH3 proteins. Only those GH3 genes investigated in this study are 

shown. Those genes in the box do not convert any of the plant hormones to conjugates.  

(B) Transcriptional regulation of selected GH3 genes, some of them encoding auxin amino 

acid conjugate synthetases. Expression was normalized to YLS8 (see Figure 2) of 

Arabidopsis. Values are means of at least three independent experiments ± SE. The 

brackets above a dataset indicate significantly differential regulation at most time points. 
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The conjugation of IAA to amino acids by GH3.2, GH3.3, GH3.4, and GH3.17 is most likely a 

detoxification reaction initiated by the host plant against the high concentrations of auxin generated in 

the root galls. This assumption is supported by the induction of the GH3 genes most highly expressed 

in clubroots also by auxin (Table S2). However, GH3.5 was shown to have additional functions to the 

IAA conjugate synthetase activity. The defense signal, SA, can be converted to amino acid conjugates [22], 

which is regarded as inactivation. The upregulation of GH3.5 in clubroots might also be interpreted as 

downregulation of plant defense responses via SA. GH3.5 is also involved in camalexin synthesis [23]. 

However, it should be noted that camalexin does not play a role in the plant's defense against  

P. brassicae [52]. Even though the concentrations of camalexin increased in infected Arabidopsis roots 

compared to controls, a mutant devoid of camalexin was not more susceptible to P. brassicae infection. 

GH3.11 (JAR1) and GH3.20 showed downregulation, whereas GH3.13 did not show any regulation. 

GH3.10 did not show any expression at all in roots (Figure 6B) and was therefore not further 

investigated. It should be noted that in the case of conjugate formation of JA with the amino acid 

isoleucine [24] an activation is achieved, i.e., the JA-isoleucine conjugate is recognized by the COI1 

receptor, which in turn leads, in analogy to auxin, to a degradation of the transcriptional repressor 

family JAZ [24]. The downregulation of GH3.11 is in agreement with the assumption that P. brassicae 

downregulates certain aspects of plant defense mechanisms [2]. The gh3.11 mutant (jar1) was shown 

to be more susceptible to clubroot infection [53]. As a function for GH3.20 has not been described yet, 

there is no possibility to speculate on the role of transcriptional downregulation during clubroot. Also, 

GH3.20 might be truncated [54]. One indication for a role in the auxin-cytokinin interaction came from 

Jones and Ljung [55]. They analyzed genes involved in auxin metabolism differentially expressed in 

response to altered cytokinin concentrations and/or responsiveness in Arabidopsis using Genevestigator 

and found several members of the GH3 family (GH3.3, GH3.7, GH3.8, GH3.18, and GH3.20) 

differentially regulated. These genes are thought to be involved in the feedback metabolic control that 

regulates relative concentrations of auxin and cytokinin in plants [55]. Both hormones play a role in 

gall development. 

ARFs interact with Aux/IAA proteins of transcriptional repressors and bind to auxin response 

elements (AuxRE) in auxin-inducible promoters [19]. Once the repressors are degraded via 

ubiquitination in the 26S proteasome, the ARFs can induce auxin-responsive genes such as the GH3s 

(Figure 1). To confirm that the transcriptional regulation is via the auxin-inducible gene expression, 

most likely then via ARFs, we have compared GH3.2 promoter::GUS lines with an intact auxin 

response element (AuxRe) in the promoter and one promoter with a mutated AuxRe (Figure 8) [56]. 

Indeed, the strong coloring in wild type promoter plants (pGH3.2::GUS) was almost abolished in those 

transgenic lines harboring a mutated GH3.2 promoter (mpGH3.2::GUS). This indicates that also 

during clubroot the AuxRe elements in the respective promoters need to be intact and that the 

regulation of the auxin response is via this transcriptional activation in root galls. The inducibility of 

the wild type promoter by IAA was confirmed, whereas this stimulation was absent in the mutated 

form (Table S3).  
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Figure 8. The activation of GH3 genes by P. brassicae occurs most likely via the auxin 

responsive element in the promoter. On the left side the wild type GH3.2 promoter was 

fused to the GUS gene (pGH3.2::GUS) and on the right side a mutated version of GH3.2 

promoter in the auxin response element (mpGH3.2::GUS) was tested. The two upper 

panels show typical pictures of the comparison of the staining of a mature root gall. The 

bar represents 1 cm. The two lower panels show parts of the roots with magnification. The 

bar represents 1 mm.  

 

The analysis of several single knockout mutants in selected GH3 genes gh3.3, gh3.4, and gh3.13 

(data not shown), as well as gh3.5 and gh3.17 (Figure 9A,B) did not show any significant alterations in 

the disease phenotype over all different spore concentrations tested. 

Figure 9. (A) Mutant analysis of two GH3 genes, gh3.5 and gh3.17, as well as the double 

mutant gh3.5 gh3.17 for changes in clubroot development 28 dai. Values of the DI at 

different inoculum densities are means of two to three independent experiments ± SE. (B) 

The same set of plants was evaluated for the shoot index (SI). The values are given as % of 

wild type. Values of the SI at different inoculum densities are means of three independent 

experiments ± SE. The asterisk indicates a significant difference at α = 0.05 based on 

Kruskal-Wallis analysis and mean rank comparison (60 plants per experiment were evaluated). 

 



Plants 2013, 2 739 

 

 

The mutant jar1 was previously shown to be more susceptible to the clubroot pathogen [53]. A 

double mutant of gh3.5 gh3.17 was more susceptible as indicated for the shoot growth (Figure 9B), 

whereas the DI did not show any changes compared to wild type (Figure 9A). It should be noted that 

subsequent work has shown that the gh3.5 mutant used here only partially reduces transcript 

concentrations due to a T-DNA insertion in the promoter region [57]. A gene knockout of GH3.5, such 

as wes1, might yield greater susceptibility [21]. Other GH3 proteins capable of conjugating IAA to 

amino acids could substitute for the loss of GH3.5 and GH3.17, explaining the rather weak root 

phenotype. Therefore, in the future higher order mutants should be included in this research.  

A higher susceptibility could be due to higher auxin concentrations when the conjugation of IAA to 

the inactive forms is reduced in the double mutant. This in turn can result in increased auxin 

accumulation, leading first to larger cells and second to growth inhibition of the shoot, if auxin is too 

high. For example, a double GH3 mutant of the moss Physcomitrella patens was reduced in growth, 

especially under conditions with high auxin concentrations [58].  

Recently evidence was presented that the IAA amino acid conjugate with aspartate (IAA-Asp) can 

promote disease progression after bacterial infection in Arabidopsis [59]. IAA-Asp was able to 

regulate virulence gene expression in the bacterial pathogen, indicating a novel mechanism in 

adaptation to auxin conjugate formation [59]. These results could also explain the upregulation of 

several GH3 genes (Figure 7B), but the results on the gh3 mutant analysis are not in agreement with 

such a function (Figure 9). If high GH3 transcript concentrations would result in disease susceptibility, 

then a mutation should result in tolerance or resistance to the pathogen, but here our results indicate 

that the double mutant gh3.5 gh3.17 was more susceptible than wild type to the protist, at least 

according to the shoot weight. This is more in accordance with high auxin concentrations. 

2.4. The Plasma Membrane Associated Receptor ABP1 Is also Upregulated during Clubroot Formation  

In addition to the nuclear auxin signaling, there is evidence for a plasma membrane associated auxin 

receptor, the auxin binding protein 1 (ABP1). Even though this receptor has been known for a very 

long time, its function is still a matter of debate [60]. A T-DNA insertion mutant indicated a function 

of the single copy gene ABP1 in embryogenesis because the mutant was embryo-lethal [27]. Since 

then several conditional ABP1 mutants methods have been generated by biotechnological methods, 

which demonstrate a role in cell division and elongation [61].  

The transcriptional upregulation of the gene encoding the plasma membrane auxin receptor ABP1 

starts earlier than the upregulation of the TIR1 family (Figure 10). From 18 dai the transcripts of ABP1 

are significantly increased in infected roots compared to controls. This time point is usually the time 

frame when the galls first become visible. The increase is detectable until 24 dai (Figure 10A).  

Klode et al. [62] provided tools to investigate the tissue specific localization of ABP1, which were 

also employed in this study. Promoter::GUS lines of Arabidopsis (pABP1::GUS) showed clear 

differences in localization and staining intensities between control and infected roots systems  

(Figure 10B). In infected roots 14 dai a strong GUS activity is largely visible in the main roots, 

whereas in control roots of corresponding age the staining is confined to root tips especially of the 

lateral root system. At 21 dai the staining in the control roots is almost zero, whereas the gall is highly 
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stained. The promoter was not activated by different IAA concentrations (data not shown). The importance 

of this signaling pathway has to be further demonstrated, e.g., by using conditional ABP1 mutants. 

Figure 10. (A) Gene expression of auxin binding protein 1 (ABP1) during clubroot. 

Transcript analysis was normalized to YLS8 of Arabidopsis. Values are mean of three 

independent experiments ± SE. Significant changes are indicated by an asterisk.  

(B) Promoter::GUS analysis (pABP1::GUS) at two time points after inoculation (dai). The 

bar represents 0.1 cm.  

 

2.5. Treatment with Potassium Channel Inhibitors Increase Tolerance towards the Clubroot Pathogen  

The upregulation of ABP1 warrants the investigation of the role of putative target molecules during 

gall formation. As ABP1 is reported to be involved in the regulation of cell expansion [14] possible 

targets are either the H
+
-ATPase at the plasma membrane or the influx potassium channels at the same 

location (Figure 1). The activity of potassium channels is directly connected with the increase of the 

turgor pressure within the cell by causing uptake of H2O into the vacuole and thus the necessary 

counterpart to cell wall loosening. K
+
-channel activity can be activated by auxin [63], so the high 

auxin concentrations during clubroot might directly act on cell elongation via increase of potassium 

ion influx and subsequent increase in turgor pressure. In addition, K
+
-channel gene transcription can be 

influenced by auxin and follows the auxin redistribution during gravitropic curvature in maize [64,65]. 

A role for K
+
-channels in auxin induced cell elongation was also demonstrated in Arabidopsis 

hypocotyls [66]. After the application of auxin differences between protoplasts from wild type and  

K
+
-channel mutant kat1 were monitored. The amplitude of K

+
 in currents in the mutant was reduced  

two-fold in comparison to wild type, indicating a function for KAT1 in auxin induced potassium influx. 

According to microarray analyses [7] several inward directed potassium channel genes highly 

expressed in the hypocotyls of Arabidopsis [28] are upregulated after infection with P. brassicae 

(Figure 11A). All channels belong to the cyclic nucleotide binding/inward rectifier potassium channels. 

Claussen et al. [67] demonstrated that auxin-induced cell elongation could be very effectively inhibited 

by potassium channel blockers. Therefore, we used the K
+
-channel inhibitor tetraethylammonium (TEA) 
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in treatment of roots starting together with the inoculation time point. The root system was apparently 

healthier after TEA treatment with longer main roots present compared to H2O treatment (Figure 11B). 

Both, infection rate and DI were significantly reduced after 1× (Figure 11C) treatment with 10 mM 

TEA. When the plants were treated two times with the same concentration of TEA the results did not 

differ from the 1× treatment concerning the phenotype of the plants and their response to the clubroot 

pathogen (data not shown).  

Figure 11. (A) Regulation of potassium channels during clubroot according to microarray 

analysis [7]. All belong to cyclic nucleotide binding/inward rectifier potassium channel. 

From the K
+
-channels only those have been looked at which show expression in the 

hypocotyl [28]. (B) Phenotype of P. brassicae-infected roots 28 dai after treatment with  

10 mM TEA 1× a week. The bars represent 1 cm. The phenotype of shoots after the 

treatment is shown in Figure S1. (C) Phytopathological analysis after treatment with  

10 mM tetraethylammonium (TEA) a potassium channel blocker showed a reduction of 

root galls 28 dai. The fresh weight of plants was not altered. Both treatments with TEA  

(2× and 1×) showed the same results (1× is shown). Data are means of three different 

experiments ± SE. The asterisk for DI indicates a significant differences at α = 0.05 based 

on Kruskal-Wallis analysis and mean rank comparison. 

 

Especially after TEA treatment more plants were found in disease classes 0 (no infection) and 1 

(very low disease severity), whereas in controls most plants were categorized to classes 3 and 4 (high 

disease severity) (Figure 11C). However, it should be noted that the infection rate was also lower after 

TEA treatment. Thus, it cannot be ruled out that TEA might have a direct effect of P. brassicae 

zoospores, which in turn would lead to lower disease indices. This assumption should be investigated 

in future work. Even though the aboveground phenotype was altered after TEA treatment, the overall 
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fresh weight of TEA and H2O treated the plants was the same (Figure 11C). The aboveground 

phenotype of TEA treated plants was shorter, but had more branches (Figure S2). This clearly shows 

that blocking potassium influx renders the Arabidopsis plants more tolerant to clubroot. It also 

demonstrates that one player in the auxin induced cell elongation in root galls might be K
+
-channels. 

Since we cannot completely rule out that TEA has a different effect on the clubroot development, it is 

suggested to use K
+
-channel mutants to further substantiate the claims made here. 

3. Experimental Section  

3.1. Plant and Pathogen Material  

The ecotype Col-0 of Arabidopsis thaliana and the mutant lines for axr2-1, gh3.3, gh3.4, gh3.5, 

gh3.13, and gh3.17 were originally obtained from Nottingham Arabidopsis Stock Centre (NASC). 

Mutant lines tir1, afb1, and afb1,afb2 were provided by Mark Estelle (UC San Diego, La Jolla, CA, 

USA) and described in [32]. Homozygous mutant lines were tested for transcript reduction by using 

the PCR conditions and primers described below and in Table S4. The gh3.5 and gh3.17 T-DNA 

insertion mutants used for generating the double mutant were previously described [20]. The  

double mutant was identified by genotyping individuals from a segregating population after  

crossing, using the following primers; Lba1 for the T-DNA border, CGGAAAGAGAGAAAA  

and CGATCCTGTTGATCTCAGGC for gh3.5, and TTCAACATCCTTCAAGCCTC and 

CGAAAAAGAGAGGGAGACAAAG for gh3.17.  

The lines carrying the GUS gene under the control of the GH3.2 promoter (pGH3.2::GUS, 

mpGH3.2::GUS) were provided by Claus Schwechheimer (TU München, Germany) and were 

described in [56]. The line carrying the GUS gene under the control of the ABP1 promoter was 

described in [62]. 

The P. brassicae isolate e3 used in this study was described by Fähling et al. [68]. 

3.2. Infection Procedure and Phytopathological Analyses  

Arabidopsis thaliana wild type Columbia and mutant seedlings were grown in a controlled 

environment (23 °C, 16 h light, 100 µM photons s
−1

m
−2

) using a compost-sand (9:1, v/v) mixture  

(pH 5.8). Fourteen-day-old Arabidopsis seedlings were inoculated by injecting the soil around each 

plant with 2 mL of a resting spore suspension of the pathogen with the spore concentration indicated in 

Results. The spore suspension was obtained by homogenizing mature clubroot galls of Chinese 

cabbage (Brassica rapa), followed by filtering the spores through gauze (25 µm pore width) and two 

centrifugation steps (2,500 g, 10 min). The resting spores were resuspended in 50 mM KH2PO4 buffer 

(pH 5.8). Disease symptoms were assessed at 28 dai. For the determination of the shoot fresh weight 

the plants were cut at the top of the hypocotyl. Shoot fresh weight of infected and controls was 

determined and the shoot index (Si/Sni) [53] was calculated in some experiments. At least 60 Arabidopsis 

plants were analysed for each line and treatment and the experiments were repeated at least two times. 

The disease was assessed qualitatively on the basis of the disease index (DI) [53]. The percentage of 

plants in different disease classes is also specified (0, no symptoms; 1 + 2, roots with light symptoms; 

3 + 4, roots with severe symptoms). The qualitative disease assessment data were analysed first using 
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the Kruskal-Wallis test and subsequently by comparing the mean rank differences as described by 

Siemens et al. [53]. Controls were the same age and were treated with 50 mM KH2PO4 buffer (pH 5.8) 

instead of spore suspension. 

3.3. Treatment with Tetraethylammonium  

Plants were treated with 10 mM tetraethylammonium (TEA) by pipetting 1× or 2× a week 2 mL of 

the solution around each seedling on the soil, beginning with the time point of inoculation with  

P. brassicae resting spores. This treatment should ensure that the effect of TEA is mainly excerted on 

the roots, and the shoots are influenced as little as possible. Controls were watered in the same time 

intervals with the same volume of H2O.  

3.4. RNA Extraction and Semiquantitative RT-PCR 

Total RNA was isolated from control and infected roots of Arabidopsis at different times after 

infection using TRIzol
®
 reagent (Invitrogen, Karlsruhe, Germany) according to the manufacturers 

instructions. To minimize contamination with genomic DNA, RNA was digested with RNase-free 

DNase (1 U μL
−1

) (Stratagene). First-strand cDNA was prepared from total RNA using M-MLV 

reverse transcriptase (Invitrogen).  

The primers, annealing temperatures (°C) and times as well as cycle numbers used are listed in 

Table S4. These sequences are perfect match primers corresponding to a nonhomologous region in 

other family member genes, either in the coding region or in the 5'-untranslated region (5'-UTR) and 

coding region. To rule out the amplification of genomic DNA, the primers were chosen so that they 

spanned an intron in the genomic sequence. Consequently, the resulting PCR amplification product 

would be larger (data not shown). As reference, all cDNA samples were amplified with A. thaliana 

YLS8 primers and with P. brassicae actin primers to confirm the presence of the pathogen. PCR was 

performed according to standard procedures using the following programme for amplification:  

Initial denaturation at 95 °C for 5 min, followed by the number of cycles given in Table S4 of  

95 °C/60 s–x °C/x s – 72 °C/60 s (x stands for the conditions given in Table S4), and final elongation 

at 72 °C for 5 min. 

3.5. ß-Glucuronidase Staining  

The pattern of ß-glucuronidase activity in the promoter::GUS lines was determined in roots by 

histochemical staining with 5-bromo-4-chloro-3-indolyl glucuronide (X-Gluc) [69]. Plants were 

incubated in 0.1 M NaH2PO4/Na2HPO4 buffer, pH 7.4, containing 10 mM Na2EDTA, 0.5 mM 

K3(Fe(CN)6), 0.5 mM K4(Fe(CN)6), 0.5% (w/v) Triton X-100, and 50 µM substrate (X-Gluc dissolved 

in DMSO). After 1 h incubation at 37 °C, plants were rinsed and placed in 100% acetone for 30 min. 

After rinsing, the plants were transferred to the NaPO3 buffer (pH 7.4) overnight, without the substrate, 

to block the reaction.  
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3.6. Re-Analysis of Available Microarray Experiments 

The AGI numbers of transcripts for selected genes are from the TAIR database [70]. Transcript 

concentrations were compared for control and IAA treatment by using the Arabidopsis eFP  

browser [31,48] and for control and P. brassicae-infected roots using the microarray experiment  

E-MEXP-254 [7]. To compare the axr2 mutant with wild type data from [46] were used. 

4. Conclusions  

Here, we have shown that the auxin response in clubroot galls induced by P. brassicae is mediated 

by the activation of two signaling pathways, one activating transcriptional responses, controlling 

among others auxin homeostasis, the other probably directly controlling the events at the plasma 

membrane leading to cell elongation (see model in Figure 1). Among the players most likely involved 

in the second are potassium influx channels, which could regulate the turgor pressure within the cell in 

response to auxin leading to cell elongation.  

The transcriptional response pathway controls a number of auxin-related genes, including the 

GH3s, in response to high auxin concentrations found in clubroot-infected tissue. The GH3 proteins 

are active in the control of auxin homeostasis leading to the conjugation of free IAA to amino acids 

and thereby inactivating the auxin molecule. Consequently, a transcriptional regulator of GH3 gene 

expression, ARF8, was also upregulated in root galls. Mutant analysis with afb receptor mutants as 

well as gh3 mutants corroborated the involvement of these auxin pathways in the clubroot disease. 
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