34 research outputs found

    Novel mechanisms in the regulation of 5-lipoxygenase gene expression by 1,25-dihydroxyvitamin D3 and transforming growth factor ß

    Get PDF
    Die 5 Lipoxygenase (5 LO) ist das Schlüsselenzym in der Synthese von Leukotrienen. Sie wird auf transkriptioneller und posttranskriptioneller Ebene reguliert. Die Differenzierung myeloider Zelllinien mit 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) und transformierendem Wachstumsfaktor beta (TGFbeta) führt zu einer Erhöhung der 5 LO mRNA-, Protein-Bildung und der zellulären Enzymaktivität. Hier wurde gezeigt, dass dabei reife, nicht jedoch prä-mRNA der 5 LO im Zytosol und im Zellkern stark angereichert wird und dass beide Agentien in die mRNA-Prozessierung eigreifen. Obwohl die Bindung von VDR-Retinoid-X-Rezeptor (RXR)-Heterodimeren an Bindungsstellen im 5 LO-Promotor mittels DNAseI-Footprinting und EMSAs nachgewiesen wurde, konnten Reportergene unter der Kontrolle des 5 LO-Promotors in transienten und stabilen Transfektionen durch 1,25(OH)2D3/TGFbeta nicht stimuliert werden. Offensichtlich wird die Induktion der Expression der 5 LO durch 1,25(OH)2D3/TGFbeta durch Elemente außerhalb des Promotors vermittelt. In transienten Transfektionen führte der Einbau der kodierenden Sequenz der 5 LO in Luziferase-Plasmide bei Cotransfektion von VDR/RXR zu einer 5 fachen Induktion der Reportergen-Aktivität durch 1,25(OH)2D3/TGFbeta, was durch zusätzlichen Einbau der letzten vier Introns auf eine 13-fache Erhöhung gesteigert wurde. Der VDR zeigte einen Ligand-unabhängigen Effekt. Diese Reportergen-Effekte waren promotorunabhängig und von der kodierenden Sequenz gesteuert. RT-PCR-Analyse wies auf eine Deletion von Teilen der kodierenden Sequenz im Laufe der mRNA-Prozessierung hin, was durch 1,25(OH)2D3/TGFbeta verhindert wird. Auch Cotransfektion der TGFbeta-Effektoren Smads 3/4 führte in Abhängigkeit von der kodierenden Sequenz und in geringerem Maße von der 3'-UTR und den Introns J M, aber unabhängig vom Promotor, zu einer starken Erhöhung der Reportergenaktivität. Die 5 LO-Expression wird in den untersuchten Zellen vermutlich durch posttranskriptionelle Prozesse (Splicing, mRNA-Reifung) herunterreguliert, während 1,25(OH)2D3/TGFbeta die Expression der 5 LO durch eine Gegenregulation zu erhöhen, an der Komplexe beteiligt sind, die vermutlich Smads, VDR-RXR-Dimere, andere Transkriptionsfaktoren, Coaktivatoren, RNA-Polymerase II und Splicing-Faktoren enthalten. Hyperacetylierung des 5 LO-Promoters durch Inkubation mit mit dem Histondeacetylase-Inhibitor TsA führte zu einer transkriptionellen Aktivierung. Die kodierende Sequenz (und die Introns) wirkt diesem Effekt vermutlich durch die Rekrutierung von HDACs an VDR oder Smads, die direkt oder indirekt an die kodierende Region binden, entgegen

    Primary Vitamin D Target Genes of Human Monocytes

    Get PDF
    The molecular basis of vitamin D signaling implies that the metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) of the secosteroid vitamin D3 activates the transcription factor vitamin D receptor (VDR), which in turn modulates the expression of hundreds of primary vitamin D target genes. Since the evolutionary role of nuclear receptors, such as VDR, was the regulation of cellular metabolism, the control of calcium metabolism became the primary function of vitamin D and its receptor. Moreover, the nearly ubiquitous expression of VDR enabled vitamin D to acquire additional physiological functions, such as the support of the innate immune system in its defense against microbes. Monocytes and their differentiated phenotypes, macrophages and dendritic cells, are key cell types of the innate immune system. Vitamin D signaling was most comprehensively investigated in THP-1 cells, which are an established model of human monocytes. This includes the 1,25(OH)2D3-modulated cistromes of VDR, the pioneer transcription factors PU.1 and CEBPA and the chromatin modifier CTCF as well as of the histone markers of promoter and enhancer regions, H3K4me3 and H3K27ac, respectively. These epigenome-wide datasets led to the development of our chromatin model of vitamin D signaling. This review discusses the mechanistic basis of 189 primary vitamin D target genes identified by transcriptome-wide analysis of 1,25(OH)2D3-stimulated THP-1 cells and relates the epigenomic basis of four different regulatory scenarios to the physiological functions of the respective genes

    Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy

    Get PDF
    A global understanding of the actions of the nuclear hormone 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) and its vitamin D receptor (VDR) requires a genome-wide analysis of VDR binding sites. In THP-1 human monocytic leukemia cells we identified by ChIP-seq 2340 VDR binding locations, of which 1171 and 520 occurred uniquely with and without 1α,25(OH)2D3 treatment, respectively, while 649 were common. De novo identified direct repeat spaced by 3 nucleotides (DR3)-type response elements (REs) were strongly associated with the ligand-responsiveness of VDR occupation. Only 20% of the VDR peaks diminishing most after ligand treatment have a DR3-type RE, in contrast to 90% for the most growing peaks. Ligand treatment revealed 638 1α,25(OH)2D3 target genes enriched in gene ontology categories associated with immunity and signaling. From the 408 upregulated genes, 72% showed VDR binding within 400 kb of their transcription start sites (TSSs), while this applied only for 43% of the 230 downregulated genes. The VDR loci showed considerable variation in gene regulatory scenarios ranging from a single VDR location near the target gene TSS to very complex clusters of multiple VDR locations and target genes. In conclusion, ligand binding shifts the locations of VDR occupation to DR3-type REs that surround its target genes and occur in a large variety of regulatory constellations

    Dynamics of nuclear receptor target gene regulation

    Get PDF
    Ligand-regulated nuclear receptors, such as estrogen receptors, glucocorticoid receptor, vitamin D receptor, and peroxisome proliferator-activated receptors, belong to the most widely studied and best understood transcription factors. Therefore, the dynamic nature of transcriptional regulation was observed first with different members of the nuclear receptor superfamily, but is now also extended to other transcription factors, such as nuclear factor κB. Dynamic and in part cyclical processes were observed on the level of translocation into the nucleus, association with genomic binding sites, exchange of co-regulators and chromatin modifiers, occurrence of chromatin marks, and activities of RNA polymerase II resulting in mRNA synthesis. In this review, we summarize recent findings on the dynamic regulation of nuclear receptor target genes in the chromatin context

    ETS transcription factor family member GABPA contributes to vitamin D receptor target gene regulation

    No full text
    Binding motifs of the ETS-domain transcription factor GABPA are found with high significance below the summits of the vitamin D receptor (VDR) cistrome. VDR is the nuclear receptor for the biologically most active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). In this study, we determined the GABPA cistrome in THP-1 human monocytes and found that it is comprised of 3822 genomic loci, some 20% of which were modulated by 1,25(OH)2D3. The GABPA cistrome showed a high overlap rate with accessible chromatin and the pioneer transcription factor PU.1. Interestingly, 23 and 12% of persistent and transient VDR binding sites, respectively, co-localized with GABPA, which is clearly higher than the rate of secondary VDR loci (4%). Some 40% of GABPA binding sites were found at transcription start sites, nearly 100 of which are of 1,25(OH)2D3 target genes. On 593 genomic loci VDR and GABPA co-localized with PU.1, while only 175 VDR sites bound GABPA in the absence of PU.1. In total, VDR sites with GABPA co-localization may control some 450 vitamin D target genes. Those genes that are co-controlled by PU.1 preferentially participate in cellular and immune signaling processes, while the remaining genes are involved in cellular metabolism pathways. In conclusion, GABPA may contribute to differential VDR target gene regulation

    Primary vitamin D target genes of human monocytes

    No full text
    The molecular basis of vitamin D signaling implies that the metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) of the secosteroid vitamin D3 activates the transcription factor vitamin D receptor (VDR), which in turn modulates the expression of hundreds of primary vitamin D target genes. Since the evolutionary role of nuclear receptors, such as VDR, was the regulation of cellular metabolism, the control of calcium metabolism became the primary function of vitamin D and its receptor. Moreover, the nearly ubiquitous expression of VDR enabled vitamin D to acquire additional physiological functions, such as the support of the innate immune system in its defense against microbes. Monocytes and their differentiated phenotypes, macrophages and dendritic cells, are key cell types of the innate immune system. Vitamin D signaling was most comprehensively investigated in THP-1 cells, which are an established model of human monocytes. This includes the 1,25(OH)2D3-modulated cistromes of VDR, the pioneer transcription factors PU.1 and CEBPA and the chromatin modifier CTCF as well as of the histone markers of promoter and enhancer regions, H3K4me3 and H3K27ac, respectively. These epigenome-wide datasets led to the development of our chromatin model of vitamin D signaling. This review discusses the mechanistic basis of 189 primary vitamin D target genes identified by transcriptome-wide analysis of 1,25(OH)2D3-stimulated THP-1 cells and relates the epigenomic basis of four different regulatory scenarios to the physiological functions of the respective genes

    Characterization of Genomic Vitamin D Receptor Binding Sites through Chromatin Looping and Opening

    No full text
    <div><p>The vitamin D receptor (VDR) is a transcription factor that mediates the genomic effects of 1α,25-dihydroxyvitamin D<sub>3</sub> (1,25(OH)<sub>2</sub>D<sub>3</sub>). Genome-wide there are several thousand binding sites and hundreds of primary 1,25(OH)<sub>2</sub>D<sub>3</sub> target genes, but their functional relation is largely elusive. In this study, we used ChIA-PET data of the transcription factor CTCF in combination with VDR ChIP-seq data, in order to map chromatin domains containing VDR binding sites. In total, we found 1,599 such VDR containing chromatin domains and studied in THP-1 human monocytic leukemia cells four representatives of them. Our combined ChIP-seq and FAIRE-seq time course data showed that each of these four domains contained a master VDR binding site, where an increase of VDR binding pairs with 1,25(OH)<sub>2</sub>D<sub>3</sub>-promoted chromatin opening and the presence of a highly significant DR3-type sequence below the peak summit. These sites differed in their relative VDR binding but not in their kinetics, while other loci either had a weaker and delayed VDR association or could not be confirmed at all. All studied chromatin domains contained at least one primary 1,25(OH)<sub>2</sub>D<sub>3</sub> target gene demonstrating a characteristic slope of mRNA increase, while neighboring genes responded delayed, if at all. In conclusion, the observation of ligand-inducible VDR binding and chromatin opening combined with a DR3-type sequence highlighted genome-wide 160 VDR loci that have within their chromatin domain a more than 4-fold increased likelihood to identify a primary 1,25(OH)<sub>2</sub>D<sub>3</sub> target gene than in the vicinity of other genomic VDR binding sites.</p></div

    Gene Regulatory Scenarios of Primary 1,25-Dihydroxyvitamin D3 Target Genes in a Human Myeloid Leukemia Cell Line

    Get PDF
    Genome- and transcriptome-wide data has significantly increased the amount of available information about primary 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) target genes in cancer cell models, such as human THP-1 myelomonocytic leukemia cells. In this study, we investigated the genes G0S2, CDKN1A and MYC as master examples of primary vitamin D receptor (VDR) targets being involved in the control of cellular proliferation. The chromosomal domains of G0S2 and CDKN1A are 140–170 kb in size and contain one and three VDR binding sites, respectively. This is rather compact compared to the MYC locus that is 15 times larger and accommodates four VDR binding sites. All eight VDR binding sites were studied by chromatin immunoprecipitation in THP-1 cells. Interestingly, the site closest to the transcription start site of the down-regulated MYC gene showed 1,25(OH)2D3-dependent reduction of VDR binding and is not associated with open chromatin. Four of the other seven VDR binding regions contain a typical DR3-type VDR binding sequence, three of which are also occupied with VDR in macrophage-like cells. In conclusion, the three examples suggest that each VDR target gene has an individual regulatory scenario. However, some general components of these scenarios may be useful for the development of new therapy regimens

    The histone deacetylase inhibitor trichostatin A mediates upregulation of 5-lipoxygenase promoter activity by recruitment of Sp1 to distinct GC-boxes

    No full text
    The histone deacetylase inhibitor trichostatin A (TsA) potently induces 5-lipoxygenase (5-LO) promoter activity in reporter gene assays as well as 5-LO mRNA expression. We identified two proximal Sp1/Sp3 binding sites in the 5-LO gene promoter mediating the TsA effect in both 5-LO-negative HeLa cells and in 5-LO expressing Mono Mac 6 (MM6) cells, the tandem GC-boxes, by contrast, were not important for the TsA effect. TsA neither altered the protein expression levels of Sp1/Sp3 nor of the histone deacetylases HDAC1/2, nor did it apparently change the protein complex formation by these factors. Also, treatment of cells with TsA did not change the binding affinity of Sp1/Sp3 in cell extracts, as tested by DAPA analysis using probes containing the proximal GC boxes. However, in the living cell TsA induced Sp1, Sp3 and RNA polymerase II recruitment to the 5-LO promoter without changing the acetylation status of histone protein H4. Cotransfection studies suggest that both Sp1 and Sp3 can mediate the TsA effect. This is the first report demonstrating that Sp3 is involved in the regulation of 5-LO promoter activity. In summary, we show that TsA increases 5-LO promoter activity by the enhanced recruitment of Sp1 and Sp3 to the 5-LO promoter
    corecore