62 research outputs found

    A monitoring framework based on exergetic analysis for sustainability assessment of direct laser metal deposition process

    Get PDF
    With the constant increase of energy costs and environmental impacts, improving the process efficiency is considered a priority issue for the manufacturing field. A wide knowledge about materials, energy, machinery, and auxiliary equipment is required in order to optimize the overall performance of manufacturing processes. Sustainability needs to be assessed in order to find an optimal compromise between technical quality of products and environmental compatibility of processes. In this new Industry 4.0 era, innovative manufacturing technologies, as the additive manufacturing, are taking a predominant role. The aim of this work is to give an insight into how thermodynamic laws contribute at the same time to improve energy efficiency of manufacturing resources and to provide a methodological support to move towards a smart and sustainable additive process. In this context, a fundamental step is the proper design of a sensing and real-time monitoring framework of an additive manufacturing process. This framework should be based on an accurate modelling of the physical phenomena and technological aspects of the considered process, taking into account all the sustainability requirements. To this end, a thermodynamic model for the direct laser metal deposition (DLMD) process was proposed as a test case. Finally, an exergetic analysis was conducted on a prototype DLMD system to validate the effectiveness of an ad-hoc monitoring system and highlight the limitations of this process. What emerged is that the proposed framework provided significant advantages, since it represents a valuable approach for finding suitable process management strategies to identify sustainable solutions for innovative manufacturing procedures

    Simulated versus physical bench tests

    Get PDF
    none8Pierpaolo Mincarone; Antonella Bodini; Saverio Sabina; Riccardo Colella; Maria Rosaria Tumolo; Martin Fawdry; Dimitrios I. Fotiadis; Carlo Giacomo LeoMincarone, Pierpaolo; Bodini, Antonella; Sabina, Saverio; Colella, Riccardo; Tumolo, MARIA ROSARIA; Fawdry, Martin; Fotiadis, Dimitrios I.; Giacomo Leo, Carl

    Health Technology Assessment for In Silico Medicine: Social, Ethical and Legal Aspects

    Get PDF
    The application of in silico medicine is constantly growing in the prevention, diagnosis, and treatment of diseases. These technologies allow us to support medical decisions and self- management and reduce, refine, and partially replace real studies of medical technologies. In silico medicine may challenge some key principles: transparency and fairness of data usage; data privacy and protection across platforms and systems; data availability and quality; data integration and interoperability; intellectual property; data sharing; equal accessibility for persons and populations. Several social, ethical, and legal issues may consequently arise from its adoption. In this work, we provide an overview of these issues along with some practical suggestions for their assessment from a health technology assessment perspective. We performed a narrative review with a search on MEDLINE/Pubmed, ISI Web of Knowledge, Scopus, and Google Scholar. The following key aspects emerge as general reflections with an impact on the operational level: cultural resistance, level of expertise of users, degree of patient involvement, infrastructural requirements, risks for health, respect of several patients’ rights, potential discriminations for access and use of the technology, and intellectual property of innovations. Our analysis shows that several challenges still need to be debated to allow in silico medicine to express all its potential in healthcare processes

    Development of a micro-solid-phase extraction molecularly imprinted polymer technique for synthetic cannabinoids assessment in urine followed by liquid chromatography–tandem mass spectrometry

    Get PDF
    Several molecularly imprinted polymers (MIPs) have been synthesized for the first time using various synthetic cannabinoids (JWH007, JWH015 and JWH098) as template molecules. Ethylene dimethacrylate (EDMA) was used as a functional monomer for all cases. Similarly, divinylbenzene (DVB) and 2,2′-azobisisobutyronitrile (AIBN) were used as cross-linker and initiator, respectively. The prepared MIPs have been fully characterized and evaluated as new selective adsorbents for micro-solid phase extraction (μ-SPE) of synthetic cannabinoids in urine. The developed MIP-μ-SPE devices consisted of a polypropylene (PP) porous membrane containing the adsorbent (novel porous membrane protected micro-solid phase extraction based on a cone-shaped device) for operating in batch mode, which allowed a fast and integrated extraction-cleanup procedure. High performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) was used for quantifying the analytes after MIP-μ-SPE. The best performances were obtained for MIPs prepared from JWH015 as a template. Optimum loading conditions were found to be urine pH of 5.0 and adsorption time of 8.0 min under mechanical (orbital-horizontal) stirring at 100 rpm. The composition of the eluting solution consisted of 75:20:5 heptane/2-propanol/ammonium hydroxide. The elution was assisted by ultrasounds (37 kHz, 325 W) for 8.0 min. In addition, studies regarding selectivity have also been addressed for several drugs of abuse under optimized loading/adsorption conditions. Validation of the method showed good precision and analytical recovery by intra-day and inter-day assays (RSD values lower than 7 and 10% for intra-day and inter-day precision, and within the 83–100% range for intra-day and inter-day analytical recovery)

    From: Larry Roberts (enclosure)

    Get PDF
    Illegal trafficking of pharmaceutical products by criminal organisations is a global threat for public health. Drugs for erectile dysfunction such as phosphodiesterase type 5 inhibitors are the most commonly counterfeited medicines in Europe. The search of possible toxic chemical substances in seized products is needed to provide early warning for public health. Furthermore, the elemental profile of the seized products can be useful in criminal investigations. For the first time an ion beam analysis (IBA) procedure to characterise authentic Viagra® tablets and sildenafil-based illegal products is described. Moreover, results are compared with the ones obtained by instrumental neutron activation analysis (INAA) on authentic Viagra® tablets in two reactors. IBA results showed that a combination of particle-induced X-ray emission (PIXE) and secondary ion mass spectrometry using primary ions with energies in the range of several MeV (MeV-SIMS) is a powerful tool to characterise different products in a straightforward manner, allowing discrimination between legal and illegal products. INAA allowed accurate elemental quantification and also showed a great potential for the future implementation of an inter- laboratory classification system

    Effects of initial-state dynamics on collective flow within a coupled transport and viscous hydrodynamic approach

    Full text link
    We evaluate the effects of preequilibrium dynamics on observables in ultrarelativistic heavy-ion collisions. We simulate the initial nonequilibrium phase within A MultiPhase Transport (AMPT) model, while the subsequent near-equilibrium evolution is modeled using (2+1)-dimensional relativistic viscous hydrodynamics. We match the two stages of evolution carefully by calculating the full energy-momentum tensor from AMPT and using it as input for the hydrodynamic evolution. We find that when the preequilibrium evolution is taken into account, final-state observables are insensitive to the switching time from AMPT to hydrodynamics. Unlike some earlier treatments of preequilibrium dynamics, we do not find the initial shear viscous tensor to be large. With a shear viscosity to entropy density ratio of 0.120.12, our model describes quantitatively a large set of experimental data on Pb+Pb collisions at the Large Hadron Collider(LHC) over a wide range of centrality: differential anisotropic flow vn(pT) (n=2−6)v_n(p_T) ~(n=2-6), event-plane correlations, correlation between v2v_2 and v3v_3, and cumulant ratio v2{4}/v2{2}v_2\{4\}/v_2\{2\}.Comment: 10 pages, v2: minor revisio

    After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission

    Get PDF
    NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction-specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction
    • …
    corecore