4 research outputs found

    Effect of inbreeding on intellectual disability revisited by trio sequencing

    No full text
    In outbred Western populations, most individuals with intellectual disability (ID) are sporadic cases, dominant de novo mutations (DNM) are frequent, and autosomal recessive ID (ARID) is very rare. Due to the high rate of parental consanguinity which raises the risk for ARID and other recessive disorders, the prevalence of ID is significantly higher in Near- and Middle-East countries. Indeed, homozygosity mapping and sequencing in consanguineous families have already identified a plethora of ARID genes, but due to the design of these studies, DNMs could not be systematically assessed, and the proportion of cases that are potentially preventable by avoiding consanguineous marriages or through carrier testing is hitherto unknown. This prompted us to perform whole exome sequencing in 100 sporadic ID patients from Iran and their healthy consanguineous parents. In 61 patients, we identified apparently causative changes in known ID genes. Of these, 44 were homozygous recessive and 17 dominant de novo mutations. Assuming that the DNM rate is stable, these results suggest that parental consanguinity raises the ID risk about 3.6-fold, and about 4.1-4.25-fold for children of first-cousin unions. These results do not rhyme with recent opinions that consanguinity-related health risks are generally small and have been 'overstated' in the past. This article is protected by copyright. All rights reserved

    Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes

    No full text
    Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based solely upon the nature of the substituting amino acid: a lysine at TWIST2 residue 75 resulted in AMS, whereas a glutamine or alanine yielded BSS. TWIST2 encodes a basic helix-loop-helix transcription factor that regulates the development of mesenchymal tissues. All identified mutations fell in the basic domain of TWIST2 and altered the DNA-binding pattern of Flag-TWIST2 in HeLa cells. Comparison of wild-type and mutant TWIST2 expressed in zebrafish identified abnormal developmental phenotypes and widespread transcriptome changes. Our results suggest that autosomal-dominant TWIST2 mutations cause AMS or BSS by inducing protean effects on the transcription factor's DNA binding

    Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes

    No full text
    Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based solely upon the nature of the substituting amino acid: a lysine at TWIST2 residue 75 resulted in AMS, whereas a glutamine or alanine yielded BSS. TWIST2 encodes a basic helix-loop-helix transcription factor that regulates the development of mesenchymal tissues. All identified mutations fell in the basic domain of TWIST2 and altered the DNA-binding pattern of Flag-TWIST2 in HeLa cells. Comparison of wild-type and mutant TWIST2 expressed in zebrafish identified abnormal developmental phenotypes and widespread transcriptome changes. Our results suggest that autosomal-dominant TWIST2 mutations cause AMS or BSS by inducing protean effects on the transcription factor's DNA binding
    corecore