4,844 research outputs found

    Efficacy of first-line sodium thiosulphate administration in a case of potassium cyanide poisoning

    Get PDF
    Cyanide poisoning may occur following accidental fire-smoke inhalation or deliberate ingestion of salts. Hydroxocobalamin represents a first-line life-saving antidote. Although hydroxocobalamin represents a first-line lifesaving antidote, it is still not promptly available in the emergency department. Sodium thiosulfate can be administered in association with hydroxocobalamin whereas the delayed onset of clinical response makes sodium thiosulfate less suitable for emergency use. We describe a case of cyanide intoxication of a 43-year-old man who ingested an unknown amount of potassium cyanide, purchased via the Internet, in an attempted suicide. At admission to the emergency department, the patient presented GCS 3 with severe lactic acidosis. Orotracheal intubation, gastric lavage and oral activated charcoal were applied. Sodium thiosulfate was available in the emergency department and 10 grams were infused over a 30 minute period. Hydroxocobalamin was prescribed by the poison control centre and 5 grams were infused 2 hours after admission. Following sodium thiosulfate administration the patient was arousable and lactate concentration improved. No adverse effects were noted. Metabolic acidosis completely resolved 12 hours later. Cyanide concentration performed on blood samples collected at admission confirmed high cyanide blood levels (15 mg/L). This report highlights as the first-line administration of sodium thiosulfate, in rapid infusion, resulted effective and safe for cyanide poisoning. Our report suggests that sodium thiosulfate should be considered when hydroxocobalamin is not promptly available in an emergency settin

    Bistatic DIAL for multi-species aviation pollutant measurements from RPAS

    Get PDF
    This paper presents the conceptual design of a new low-cost measurement system for the determination of pollutant concentrations associated with aircraft operations. The proposed system employs Light Detection and Ranging (LIDAR) and passive electro-optics equipment installed in two non-collocated components. The source component consists of a tuneable small-size and low-cost/weight LIDAR emitter, which can be installed either on airborne or ground-based autonomous vehicles, or in fixed surface installations. The sensor component includes a target surface calibrated for reflectance and passive electro-optics equipment calibrated for radiance, both installed on an adjustable support. The proposed bistatic system determines the column-averaged molecular and aerosol pollutant concentrations along the LIDAR beam by measuring the cumulative absorption and scattering phenomena along the optical slant range. The molecular column densities are measured by means of Differential Absorption LIDAR (DIAL), which exploits the known molecular vibration processes for non-ambiguous species detection. Aerosol concentrations such as particulate and soot are determined by means of knowledge-based inversion with regularization. The laboratory calibration of the system components is also discussed. Previously published uncertainty analysis results highlighted the positive qualities of the proposed measurement system even in degraded meteorological conditions, making the proposed bistatic LIDAR a viable alternative to other systems currently employed

    Orbital and meteorological factors pertinent to satellite transmissions of facsimile weather charts Final report

    Get PDF
    Automatic picture transmission system on Nimbus and earth synchronous satellites for transmission of weather chart

    Unveiling the inner morphology and gas kinematics of NGC 5135 with ALMA

    Get PDF
    The local Seyfert 2 galaxy NGC5135, thanks to its almost face-on appearance, a bulge overdensity of stars, the presence of a large-scale bar, an AGN and a Supernova Remnant, is an excellent target to investigate the dynamics of inflows, outflows, star formation and AGN feedback. Here we present a reconstruction of the gas morphology and kinematics in the inner regions of this galaxy, based on the analysis of Atacama Large Millimeter Array (ALMA) archival data. To our purpose, we combine the available ∼\sim100 pc resolution ALMA 1.3 and 0.45 mm observations of dust continuum emission, the spectroscopic maps of two transitions of the CO molecule (tracer of molecular mass in star forming and nuclear regions), and of the CS molecule (tracer of the dense star forming regions) with the outcome of the SED decomposition. By applying the 3D^{\rm 3D}BAROLO software (3D-Based Analysis of Rotating Object via Line Observations), we have been able to fit the galaxy rotation curves reconstructing a 3D tilted-ring model of the disk. Most of the observed emitting features are described by our kinematic model. We also attempt an interpretation for the emission in few regions that the axisymmetric model fails to reproduce. The most relevant of these is a region at the northern edge of the inner bar, where multiple velocity components overlap, as a possible consequence of the expansion of a super-bubble.Comment: 15 pages, 13 figures, resubmitted to MNRAS after moderate revision

    Bistatic measurement system for characterisation of aviation pollutant concentrations

    Get PDF
    This paper presents the conceptual design of a low-cost measurement system for the dete1mination of aviation-related pollutant concentrations in dense air traffic areas. The proposed bistatic Light Detection and Ranging (LIDAR) system consists of two noncollocated components. The source component consists of a tuneable laser emitter, which can either be installed on a Remotely Piloted Aircraft System (RP AS) or operated from fixed and movable surface installations. The sensor component is constituted by a target surface calibrated for reflectance and a rail-mounted visible or infrared camera calibrated for radiance. The system perfmms Differential Absorption LIDAR (DIAL) measurements. The relevant oppo1t1mities and challenges, and the viability of the system in the intended operational environments are discussed. N1m1erical simulation results show promising perfmmances in term of error expected error budget even in degraded meteorological conditions, which are comparable to the more complex and relatively costly monostatic LIDAR techniques cmTently available

    A laser obstacle warning and avoidance system for unmanned aircraft sense-and-avoid

    Get PDF
    This paper presents an overview of the research activities performed to develop a new scaled variant of the Laser Obstacle Avoidance and Monitoring (LOAM) system for small-to-medium size Unmanned Aircraft (UA) platforms. This LOAM variant (LOAM+) is proposed as one of the non-cooperative sensors employed in the UA Sense-and-Avoid (SAA) system. After a brief description of the LOAM system architecture, the mathematical models developed for obstacle avoidance and calculation of alternative flight path are presented. Additionally, a new formulation is adopted for defining the uncertainty volumes associated with the detected obstacles. Simulation case studies are carried out to evaluate the performances of the avoidance trajectory generation and optimisation algorithms, which demonstrate the ability of LOAM+ to effectively detect and avoid fixed low-level obstacles in the intended path
    • …
    corecore