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Abstract 

This paper presents the conceptual design of a low-cost measurement system for the 

determination of aviation-related pollutant concentrations in dense air traffic areas. The 

proposed bistatic Light Detection and Ranging (LIDAR) system consists of two non-

collocated components. The source component consists of a tuneable laser emitter, which can 

either be installed on a Remotely Piloted Aircraft System (RPAS) or operated from fixed and 

movable surface installations. The sensor component is constituted by a target surface 

calibrated for reflectance and a rail-mounted visible or infrared camera calibrated for radiance. 

The system performs Differential Absorption LIDAR (DIAL) measurements. The relevant 

opportunities and challenges, and the viability of the system in the intended operational 

environments are discussed. Numerical simulation results show promising performances in 

term of error expected error budget even in degraded meteorological conditions, which are 

comparable to the more complex and relatively costly monostatic LIDAR techniques currently 

available. 

 

Keywords: Aircraft Emissions, Differential Absorption, DIAL, LIDAR, Pollutant 

Measurement, Sustainable Aviation. 

Introduction 

Current research activities are addressing new sensor technologies and measurement 

techniques for the determination of aviation pollutant concentrations. The new systems should 

feature either: greater operational flexibility, better sensitivity, accuracy, precision, reliability, 

greater spectral/spatial/temporal resolutions, and reduced weight/volume/costs. The research 

community is interested, in particular, in the spatial and temporal variations of macroscopic 

observables, and on the microphysical and chemical properties of atmospheric constituents 

and pollutants, including molecular, aerosol and particulate species [1-3]. An accurate 

measurement of CO2 concentration variations in space and time related to aircraft operations 

is particularly important. The advent of powerful LIDAR systems with low weight and 

packaged in relatively small casings, makes them well suited for measuring the column 

densities of various important molecular species, including carbon oxides (COX), nitrogen 

oxides (NOX), sulphur oxides (SOX), oxygen (O2) and ozone (O3), both locally and over 

extended geographic areas [4, 5]. The Near-Infrared (NIR) region of the atmospheric 

propagation spectrum is dominated by molecular absorption from H2O, CO and CO2. A 

comparison with recorded spectra enables the identification of relatively strong and isolated 

CO and CO2 transitions for unambiguous species detection [6]. These transitions have formed 

the basis of NIR sensors for measurements of CO and CO2 mole fractions in exhaust gases 

using extraction-sampling techniques and for non-intrusive measurements of CO2 in high-

temperature combustion environments. Based on the demonstrated potential of Differential 

Absorption LIDAR (DIAL) [7-9], new airborne DIAL systems will greatly benefit from the 

technological advances in tuneable, compact and low-cost laser emitters enabling further 

portions of the spectrum to be exploited for multi-species pollutant concentration 

measurements. 
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Bistatic DIAL Measurement System 

The bistatic measurement system was conceptually presented in [10], based on previous 

research [2, 3, 11-15]. The proposed system is based on the DIAL technique [16]. The laser 

source emits beams at two predefined wavelengths. The first wavelength (   ) is selected in 

correspondence of a major vibrational band of the targeted pollutant molecule (on-absorption 

line), clear from the transition/vibration spectrum of other atmospheric components. The 

second wavelength (    ) is selected in proximity of the first, but outside the vibrational band 

(off-absorption line) of the targeted pollutant species, so that the difference in cross-sections, 

    (   )   (    ) is maximised. A number of databases and atmospheric Radiative 

Transfer Model (RTM) codes are available and allow an accurate estimation of the 

propagation spectrum for identifying the optimal combination of DIAL wavelengths based on 

the mentioned criteria. As depicted in Fig. 1, the proposed bistatic DIAL measurement system 

consists of a LIDAR emitter installed on a RPAS or on fixed/movable surface installations, 

and a sensor component. The sensor component consists of a target surface featuring high and 

diffused reflectance and exhibiting Lambertian behaviour, such as Spectralon™, and a 

visible/infrared camera mounted on a rail. The RPAS platform flies pre-determined 

trajectories based on the required space and time frames of the measurement. The functional 

block diagram of the bistatic DIAL measurement system is represented in Fig. 2. 

 

 

 

Fig. 1:   Representation of the bistatic DIAL system, not to scale [17]. 
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Fig. 2:   Functional block diagram of the bistatic DIAL measurement system [18]. 

Atmospheric Laser Beam Propagation 

The propagation of laser radiation in atmosphere is affected by a number of linear and 

nonlinear effects. In [17] we described the following expression for the peak irradiance IP, 

accounting for absorption, scattering, diffraction, jitter, atmospheric turbulence and thermal 

blooming effects assuming a Gaussian profile of the laser beam at the source and an average 

focused irradiance [19, 20]: 

  (   )  
 ( )  (   )  ( )

  (  
 (   )     

 ( )     
 (   ))

                                               (1) 

where z is the linear coordinate along the beam, λ is the wavelength,  ( ) is the transmitted 

laser power, b is the blooming factor,  (   ) is the transmittance coefficient, which accounts 

for absorption and scattering associated with all molecular and aerosol species present in the 

path. The 1/e beam radiuses associated with diffraction,   (   ), beam jitter,   ( ), and 

turbulence,   (   ), can be calculated as [3, 19]: 

  (   )  
   

    
                                                                (2) 

  
 ( )   〈  

 〉                                                                 (3) 

  (   )  
    

   
    

                                                                (4) 

where Q is the beam quality factor, ao is the beam 1/e radius, 〈  
 〉 is the variance of the single 

axis jitter angle that is assumed to be equal to 〈  
 〉, and   

  is the refractive index structure 

constant. An empirical model for the blooming factor b(z), which is the ratio of the bloomed 

   to unbloomed     peak irradiance, is: 
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N is the thermal distortion parameter, calculated as: 
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where vo is the uniform wind velocity in the weak attenuation limit (z << 1),    , do , and cp 

are, respectively, the coefficients of index change with respect to temperature, density, and 

specific heat at constant pressure. The transmittance coefficient τ depends on the integral 

effect of absorption and scattering phenomena, both for molecular and aerosol species, on the 

entire beam length. The expression of Beer’s law highlighting such dependences can therefore 

be written as: 

 (   )    ∫  (   )   
 
    ∫ [  (   )     (   )     (   )     (   )]   

 
                     (7) 

where α are the absorption coefficients and β are the scattering coefficients, the subscripts m 

and a refer respectively to molecular and aerosol contributions. When referring to the integral 

absorption and scattering due to specific molecular species, it is more appropriate to express 

the transmittance with the following model: 

 (   )    ∫  (   )   
 
    ∫ ∑ [  ( )    ( )]    

 
                                     (8) 

where: 

  ( ) = cross-section of the i
th

 species 

   = molecular volume density of the i
th

 species 

From Eq. 8, the fraction between the measured incident laser energy associated with the on-

absorption line of pollutant species P and the one associated with the off-absorption line, 

          can be expressed as [10]: 

         
 (   )

 (    )
  

   

    
    [  (   )   (    )] ∫    ( )   

 
                       (9) 

where D is the total beam length. The total pollutant column density   , which is the integral 

of the molecular volume density on the entire beam, is therefore: 

   ∫   ( )     
    (       )

  

 

 
                                           (10) 

The average molecular volume concentration of the pollutant on the path,  ̃ , is therefore: 

 ̃  
  

 
   

    (       )

      
                                                   (11) 

As evident from Eq. 9 to 11, the bistatic DIAL measurement system neglects most of the 

parasite phenomena such as atmospheric visibility, particulate, rain and other precipitations, 

which would have elsewhere introduced a number of additional uncertainties in the system. 

The parasite effects, in fact, are assumed to equally affect the off-absorption and the on-

absorption transmittances. 

Aerosol Retrieval 

The retrieval of aerosol concentrations was originally examined in [2]. As per eq. 7, both 

molecular and aerosol concentrations in the transmission medium (i.e. the atmosphere) 

introduce absorption and scattering phenomena that affect the laser beam propagation. 

Therefore, the atmospheric transmittance measurement data accumulated in a certain time 



16
th

 Australian Aerospace Congress, 23-24 February 2015, Melbourne 

 

period using passive imaging systems enable the retrieval of aerosol concentrations as well. 

The difficulty in developing inversion algorithms lies in the fact that the input optical data are 

related to the investigated microphysical parameters through nonlinear integral equations of 

the first kind (Fredholm equations), which cannot be solved analytically. The generalised 

form of the Fredholm equation for atmospheric data retrieval is: 

 ( )  ( )  ∫    (       )   ( )                                       (12) 

where  ( )      ( ) represent the optical data,      is the atmospheric kernel function 

(containing information on particle size, refractive index etc.) and  ( ) is the particle size 

distribution. The numerical solution of these equations leads to the so called ill-posed inverse 

problem. Such problems are characterised by a strong sensitivity of the solution space toward 

uncertainties of the input data, the non-uniqueness of the solution space, and the 

incompleteness of the solution space. In fact, the solution space may still be correct in a 

mathematical sense, but might not necessarily reflect the physical conditions. As the problem 

cannot be entirely defined by the measurements, a priori knowledge of the state vector is 

required in order to determine the most probable solution, with a probabilistic Bayesian 

approach. Let y be the measurement vector containing the measured radiances, and x be the 

concentration of a given constituent, then the general remote sensing equation can be written 

as follows [5]: 

   (   )                                                              (13) 

where   represents the forward transfer function,   the other parameters affecting the 

measurement, and   the measurement noise. In the case of instruments measuring laser 

radiance, the vector   includes the target surface reflectance and radiance features (BRDF, 

reflectivity, emissivity and temperature), the variables describing the atmospheric state 

(vertical turbulence profile, temperature, water vapour and other atmospheric constituents, 

clouds, aerosols, etc.), and some characteristics of the measurement instruments (spectral 

response functions and resolution). The inverse problem consists in retrieving  ̂, an estimate 

of the true state  , from the measurement  , and can be expressed as: 

 ̂   (   ̂)   ( (   )     ̂)                                           (14) 

where  ̂ is an estimate of the non-retrieved parameters  , and   is the inverse transfer 

function. This a priori information consists of an a priori state vector    and its covariance 

matrix   , which may be provided by model simulations. Therefore, the inverse problem can 

be rewritten as follows: 

 ̂   (   ̂   )                                                        (15) 

Various inversion techniques were proposed. One of the most popular approaches is the 

inversion with regularisation, offering the advantage of reducing oscillations in the solution 

that are frequently experienced in data retrieved from electro-optical measurements [1, 19]. 

This approach consists in introducing constraints, such as derivative analysis (smoothness) of 

the particle size distribution functions, positive sign of the functions and maximum variations 

over time. Using appropriate kernel/base functions, this algorithm can deliver parameters such 

as effective (average) particle radius, particle size distribution, total surface-area 

concentration, total number/volume concentrations, real and imaginary parts of the refractive 

index, single scattering albedo, etc. The base functions are Gaussian fits of the existing 

particle concentration data and are used to reconstruct the investigated particle size 

distributions. The kernel functions describe the interaction of laser radiation with the 
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atmosphere and contain information about the atmospheric transmittance, including scattering 

and absorption processes. 

Error Estimation 

A preliminary error estimation was presented in [17]. The uncertainty associated with the 

measurement of the molecular volume concentration, derived from Eq. 11, is: 

  ̃ 
 

 

      
√(

        

       
)
 

 (
           

 
)
 

 (
            

  
)
 

                    (16) 

For a preliminary estimation, we introduced representative errors on the first two quadratic 

terms in eq. 16, specific to the bistatic DIAL implementation. Errors were introduced on the 

distance,   , and on the differential energy measurement, which is translated into         
 by 

means of the Bidirectional Reflectance Distribution Function (BRDF) of the target surface [3]. 

Assuming the operational conditions summarised in Table 1 and injecting source errors 

detailed in Table 2, the resulting relative error for the CO2 volume density was calculated as 
  ̃ 

 ̃ 
 = 6.77 % [17]. 

Table 1:   Assumed worst-case operative conditions [17]. 

Parameter Value 

Horizontal distance between 

the RPAS and the target surface 
1000 m 

RPAS Height Above Ground Level (AGL) 150 m 

CO2 volume density 300 ppm 

Table 2:   Assumed source errors [17]. 

Source Magnitude Affected Term Error 

Discrepancy in the 

incident angle between 

 (   ) and  (    ) 

5° azimuth 

5° elevation 

        

       
 3.04 % 

Degraded RPAS 

navigation performance 

20 m horizontally 

15 m vertically 

  

 
 2.47% 

 

These preliminary results, associated with the very low error figures from the monostatic 

Integral Path Differential Absorption (IPDA) LIDAR experimental campaigns [21] and with 

the estimated performance of the calibration technique proposed in [10], contribute to 

supporting the validity of the proposed bistatic DIAL measurement technique for high 

accuracy sensing of aviation-related pollutant concentrations. Experimental testing will be 

required to further corroborate these preliminary findings. 

Conclusions and Future Work 

This paper reviewed the recent research activities focussing on the development of an 

innovative bistatic LIDAR system for the measurement of pollutant concentrations. The 

specific implementations for carbon dioxide (CO2) and aerosol measurements were presented. 

The Differential Absorption LIDAR (DIAL) technique allows neglecting parasite effects such 

as atmospheric visibility, particulate and precipitation, and contributes to the overall accuracy 

and reliability of the proposed technique.  The uncertainty analysis for CO2 column density 

measurements showed that the proposed technique produces satisfactory results even in 
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degraded meteorological conditions, which are comparable to the more complex and 

relatively costly monostatic LIDAR techniques currently available. Current research activities 

are investigating the extension of the system to other families of aviation pollutants such as 

nitrogen oxides (NOX), sulphur oxides (SOX), and Volatile Organic Compounds (VOC) taking 

advantage of the recent availability of tuneable laser emitters for multi-species detection. The 

research activities will involve laboratory testing as well as flight testing in various 

representative conditions. In particular, the development of the airborne component will 

benefit from the concurrent research activities on RPAS-based LIDAR systems [22-24]. The 

RPAS will be equipped with Differential GPS-based Time-and-Space-Position-Information 

(TSPI) systems that were developed for augmented navigation performance of both manned 

and unmanned aircraft [25, 26] in combination with integrity augmentation systems [27-29]. 

The experimental flight testing activity will be performed in a suitably developed laser test 

range in full compliance with eye-safety requirements [3, 13, 30]. The full potential of the 

proposed bistatic DIAL measurement system will be exploited through its functional 

integration in the next generation of Air Traffic Management (ATM) systems [31-34]. 
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