897 research outputs found

    Correlations and realistic interactions in doubly closed shell nuclei

    Get PDF
    We review the latest variational calculations of the ground state properties of doubly closed shell nuclei, from 12^{12}C to 208^{208}Pb, with semirealistic and realistic two- and three-nucleon interactions. The studies are carried on within the framework of the correlated basis function theory and integral equations technique, with state dependent correlations having central and tensor components. We report results for the ground state energy, one- and two-body densities and static structure functions. For 16^{16}O and 40^{40}Ca we use modern interactions and find that the accuracy of the method is comparable to that attained in nuclear matter with similar hamiltonians, giving nuclei underbound by \sim2 MeV/A. The computed Coulomb sums are in complete agreement with the latest analysis of the experimental data.Comment: 11 Latex pages, 2 ps figures. Talk delivered at the 10th International Conference on Recent Progress In Many-Body Theories, Seattle 1999. To appear in "Advances in Quantum Many-Body Theory", vol.3, World Scientifi

    New Results in the CBF theory for medium-heavy nuclei

    Get PDF
    Momentum distributions, spectroscopic factors and quasi-hole wave functions of medium-heavy doubly closed shell nuclei have been calculated in the framework of the Correlated Basis Function theory, by using the Fermi hypernetted chain resummation techniques. The calculations have been done by using microscopic two-body nucleon-nucleon potentials of Argonne type, together with three-body interactions. Operator dependent correlations, up to the tensor channels, have been used.Comment: 6 pages, 3 figures, proceeding of the "XI Convegno su problemi di Fisica Nucleare Teorica" 11-14 Ottobre 2006, Cortona, Ital

    Las Reales Maestranzas de Caballería y su influencia en el mundo americano

    Get PDF
    Tomo II ; págs. 11-2

    Ground state of medium-heavy doubly-closed shell nuclei in correlated basis function theory

    Full text link
    The correlated basis function theory is applied to the study of medium-heavy doubly closed shell nuclei with different wave functions for protons and neutrons and in the jj coupling scheme. State dependent correlations including tensor correlations are used. Realistic two-body interactions of Argonne and Urbana type, together with three-body interactions have been used to calculate ground state energies and density distributions of the 12C, 16O, 40Ca, 48Ca and 208Pb nuclei.Comment: Latex 10 pages, 3 Tables, 10 Figure

    Renormalized Fermi hypernetted chain approach in medium-heavy nuclei

    Full text link
    The application of the Correlated basis function theory and of the Fermi hypernetted chain technique, to the description of the ground state of medium-heavy nuclei is reviewed. We discuss how the formalism, originally developed for symmetric nuclear matter, should be changed in order to describe finite nuclear systems, with different number of protons and neutrons. This approach allows us to describe doubly closed shell nuclei by using microscopic nucleon-nucleon interactions. We presents results of numerical calculations done with two-nucleon interactions of Argonne type,implemented with three-body forces of Urbana type. Our results regard ground-state energies, matter, charge and momentum distributions, natural orbits, occupation numbers, quasi-hole wave functions and spectroscopic factors of 12C, 16O, 40Ca, 48Ca and 208Pb nuclei.Comment: 127 Pages, 37 figures, Accepted for publication in Physics Report

    Introducción

    Get PDF
    corecore