17 research outputs found

    The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification

    Get PDF
    Regulation of gene expression at the level of transcriptional elongation has been shown to be important in stem cells and tumour cells, but its role in the whole animal is only now being fully explored. Neural crest cells (NCCs) are a multipotent population of cells that migrate during early development from the dorsal neural tube throughout the embryo where they differentiate into a variety of cell types including pigment cells, cranio-facial skeleton and sensory neurons. Specification of NCCs is both spatially and temporally regulated during embryonic development. Here we show that components of the transcriptional elongation regulatory machinery, CDK9 and CYCLINT1 of the P-TEFb complex, are required to regulate neural crest specification. In particular, we show that expression of the proto-oncogene c-Myc and c-Myc responsive genes are affected. Our data suggest that P-TEFb is crucial to drive expression of c-Myc, which acts as a ‘gate-keeper’ for the correct temporal and spatial development of the neural crest

    ChIP-Sequencing in Xenopus

    No full text

    DC-SCRIPT Regulates Glucocorticoid Receptor Function and Expression of Its Target GILZ in Dendritic Cells

    No full text
    Item does not contain fulltextDendritic cells (DCs) play a central role in the immune system; they can induce immunity or tolerance depending on diverse factors in the DC environment. Pathogens, but also tissue damage, hormones, and vitamins, affect DC activation and maturation. In particular, glucocorticoids (GCs) are known for their immunosuppressive effect on DCs, creating tolerogenic DCs. GCs activate the type I nuclear receptor (NR) glucocorticoid receptor (GR), followed by induced expression of the transcription factor glucocorticoid-inducible leucine zipper (GILZ). GILZ has been shown to be necessary and sufficient for GC-induced tolerogenic DC generation. Recently, we have identified the DC-specific transcript (DC-SCRIPT) as an NR coregulator, suppressing type I steroid NRs estrogen receptor and progesterone receptor. In this study, we analyzed the effect of DC-SCRIPT on GR activity. We demonstrate that DC-SCRIPT coexists with GR in protein complexes and functions as a corepressor of GR-mediated transcription. Coexpression of DC-SCRIPT and GR is shown in human monocyte-derived DCs, and DC-SCRIPT knockdown enhances GR-dependent upregulation of GILZ mRNA expression in DCs. This demonstrates that DC-SCRIPT serves an important role in regulating GR function in DCs, corepressing GR-dependent upregulation of the tolerance-inducing transcription factor GILZ. These data imply that by controlling GR function and GILZ expression DC-SCRIPT is potentially involved in the balance between tolerance and immunity

    Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) – smallRNA data set

    No full text
    Small RNA sequencing data for 79 children included in the Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) study, an open-label trial during which children with ADHD followed a few-foods diet (FFD). Sampling was done before the FFD (t1) and after 5 weeks of FFD (t2)

    Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) – lncRNA data set

    No full text
    Long non-coding RNA and coding RNA sequencing data for 79 children included in the Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) study, an open-label trial during which children with ADHD followed a few-foods diet (FFD). Sampling was done before the FFD (t1) and after 5 weeks of FFD (t2)

    Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) – Metabolomics data

    No full text
    Small-molecule profiling data for 79 children included in the Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) study, an open-label trial during which children with ADHD followed a few-foods diet (FFD). Sampling was done before the FFD (t1) and after 5 weeks of FFD (t2)

    Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) – 16S data set

    No full text
    Metagenomic 16S amplicon sequencing data for 79 children included in the Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) study, an open-label trial during which children with ADHD followed a few-foods diet (FFD). Sampling was done during screening (t0), before the FFD (t1) and after 5 weeks of FFD (t2)

    Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) – Metagenomics data set

    No full text
    Metagenomics sequencing data for 79 children included in the Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) study, an open-label trial during which children with ADHD followed a few-foods diet (FFD). Sampling was done before the FFD (t1) and after 5 weeks of FFD (t2)

    Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) – Behaviour scores

    No full text
    Symptom scores of ADHD and ODD for 79 children included in the Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) study, an open-label trial during which children with ADHD followed a few-foods diet (FFD). Sampling was done before the FFD (t1) and after 5 weeks of FFD (t2)

    Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) – MultiplexELISA data

    No full text
    Multiplex ELISA data of immune, metabolism and hormone related molecules for 79 children included in the Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) study, an open-label trial during which children with ADHD followed a few-foods diet (FFD). Sampling was done before the FFD (t1) and after 5 weeks of FFD (t2)
    corecore