1,257 research outputs found
Directional characteristics of lunar thermal emission
Directional characteristics and brightness temperatures of thermal lunar emissio
Symmetry, bifurcation and stacking of the central configurations of the planar 1+4 body problem
In this work we are interested in the central configurations of the planar
1+4 body problem where the satellites have different infinitesimal masses and
two of them are diametrically opposite in a circle. We can think this problem
as a stacked central configuration too. We show that the configuration are
necessarily symmetric and the other sattelites has the same mass. Moreover we
proved that the number of central configuration in this case is in general one,
two or three and in the special case where the satellites diametrically
opposite have the same mass we proved that the number of central configuration
is one or two saying the exact value of the ratio of the masses that provides
this bifurcation.Comment: 9 pages, 2 figures. arXiv admin note: text overlap with
arXiv:1103.627
Voting and the Cardinal Aggregation of Judgments
The paper elaborates the idea that voting is an instance of the aggregation of judgments, this being a more general concept than the aggregation of preferences. To aggregate judgments one must first measure them. I show that such aggregation has been unproblematic whenever it has been based on an independent and unrestricted scale. The scales analyzed in voting theory are either context dependent or subject to unreasonable restrictions. This is the real source of the diverse 'paradoxes of voting' that would better be termed 'voting pathologies'. The theory leads me to advocate what I term evaluative voting. It can also be called utilitarian voting as it is based on having voters express their cardinal preferences. The alternative that maximizes the sum wins. This proposal operationalizes, in an election context, the abstract cardinal theories of collective choice due to Fleming and Harsanyi. On pragmatic grounds, I argue for a three valued scale for general elections
Promocijas darbs
Elektroniskā versija nesatur pielikumu
Modularity and Optimality in Social Choice
Marengo and the second author have developed in the last years a geometric
model of social choice when this takes place among bundles of interdependent
elements, showing that by bundling and unbundling the same set of constituent
elements an authority has the power of determining the social outcome. In this
paper we will tie the model above to tournament theory, solving some of the
mathematical problems arising in their work and opening new questions which are
interesting not only from a mathematical and a social choice point of view, but
also from an economic and a genetic one. In particular, we will introduce the
notion of u-local optima and we will study it from both a theoretical and a
numerical/probabilistic point of view; we will also describe an algorithm that
computes the universal basin of attraction of a social outcome in O(M^3 logM)
time (where M is the number of social outcomes).Comment: 42 pages, 4 figures, 8 tables, 1 algorithm
Dynamic Micropatterning Reveals Substrate-Dependent Differences in the Geometric Control of Cell Polarization and Migration
Cells are highly dynamic and adopt variable shapes and sizes. These variations are biologically important but challenging to investigate in a spatiotemporally controlled manner. Micropatterning, confining cells on microfabricated substrates with defined geometries and molecular compositions, is a powerful tool for controlling cell shape and interactions. However, conventional binary micropatterns are static and fail to address dynamic changes in cell polarity, spreading, and migration. Here, a method for dynamic micropatterning is reported, where the non-adhesive surface surrounding adhesive micropatterns is rapidly converted to support specific cell-matrix interactions while allowing simultaneous imaging of the cells. The technique is based on ultraviolet photopatterning of biotinylated polyethylene glycol-grafted poly-L-lysine, and it is simple, inexpensive, and compatible with a wide range of streptavidin-conjugated ligands. Experiments using biotinylation-based dynamic micropatterns reveal that distinct extracellular matrix ligands and bivalent integrin-clustering antibodies support different degrees of front-rear polarity in human glioblastoma cells, which correlates to altered directionality and persistence upon release and migration on fibronectin. Unexpectedly, however, neither an asymmetric cell shape nor centrosome orientation can fully predict the future direction of migration. Taken together, biotinylation-based dynamic micropatterns allow easily accessible and highly customizable control over cell morphology and motility
Spatiotemporal Amplitude and Phase Retrieval of Bessel-X pulses using a Hartmann-Shack Sensor
We propose a new experimental technique, which allows for a complete
characterization of ultrashort optical pulses both in space and in time.
Combining the well-known Frequency-Resolved-Optical-Gating technique for the
retrieval of the temporal profile of the pulse with a measurement of the
near-field made with an Hartmann-Shack sensor, we are able to retrieve the
spatiotemporal amplitude and phase profile of a Bessel-X pulse. By following
the pulse evolution along the propagation direction we highlight the
superluminal propagation of the pulse peak
- …