228 research outputs found

    Control of oxidation and spin state in a single-molecule junction

    Get PDF
    The oxidation and spin state of a metal–organic molecule determine its chemical reactivity and magnetic properties. Here, we demonstrate the reversible control of the oxidation and spin state in a single Fe porphyrin molecule in the force field of the tip of a scanning tunneling microscope. Within the regimes of half-integer and integer spin state, we can further track the evolution of the magnetocrystalline anisotropy. Our experimental results are corroborated by density functional theory and wave function theory. This combined analysis allows us to draw a complete picture of the molecular states over a large range of intramolecular deformations

    Ferromagnetic coupling and magnetic anisotropy in molecular Ni(II) squares

    Full text link
    We investigated the magnetic properties of two isostructural Ni(II) metal complexes [Ni4Lb8] and [Ni4Lc8]. In each molecule the four Ni(II) centers form almost perfect regular squares. Magnetic coupling and anisotropy of single crystals were examined by magnetization measurements and in particular by high-field torque magnetometry at low temperatures. The data were analyzed in terms of an effective spin Hamiltonian appropriate for Ni(II) centers. For both compounds, we found a weak intramolecular ferromagnetic coupling of the four Ni(II) spins and sizable single-ion anisotropies of the easy-axis type. The coupling strengths are roughly identical for both compounds, whereas the zero-field-splitting parameters are significantly different. Possible reasons for this observation are discussed.Comment: 7 pages, 7 figure

    Lower critical field H_c1 and barriers for vortex entry in Bi_2Sr_2CaCu_2O_{8+delta} crystals

    Get PDF
    The penetration field H_p of Bi_2Sr_2CaCu_2O_{8+delta} crystals is determined from magnetization curves for different field sweep rates dH/dt and temperatures. The obtained results are consistent with theoretical reports in the literature about vortex creep over surface and geometrical barriers. The frequently observed low-temperature upturn of H_p is shown to be related to metastable configurations due to barriers for vortex entry. Data of the true lower critical field H_c1 are presented. The low-temperature dependence of H_c1 is consistent with a superconducting state with nodes in the gap function. [PACS numbers: 74.25.Bt, 74.60.Ec, 74.60.Ge, 74.72.Hs

    Spin dynamics in molecular ring nanomagnets: Significant effect of acoustic phonons and magnetic anisotropies

    Full text link
    The nuclear spin-lattice relaxation rate 1/T_1_ is calculated for magnetic ring clusters by fully diagonalizing their microscopic spin Hamiltonians. Whether the nearest-neighbor exchange interaction J is ferromagnetic or antiferromagnetic, 1/T_1_ versus temperature T in ring nanomagnets may be peaked at around k_B_T=|J| provided the lifetime broadening of discrete energy levels is in proportion to T^3^. Experimental findings for ferromagnetic and antiferromagnetic Cu^II^ rings are reproduced with crucial contributions of magnetic anisotropies as well as acoustic phonons.Comment: 5 pages with 5 figures embedded, to be published in J. Phys. Soc. Jpn. 75, No. 10 (2006

    Model Exact Low-Lying States and Spin Dynamics in Ferric Wheels; Fe6_6 to Fe12_{12}

    Get PDF
    Using an efficient numerical scheme that exploits spatial symmetries and spin-parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for ferric wheels up to Fe12_{12}. The largest calculation involves the Fe12_{12} ring which spans a Hilbert space dimension of about 145 million for Ms_s=0 subspace. Our calculated gaps from the singlet ground state to the excited triplet state agrees well with the experimentally measured values. Study of the static structure factor shows that the ground state is spontaneously dimerized for ferric wheels. Spin states of ferric wheels can be viewed as quantized states of a rigid rotor with the gap between the ground and the first excited state defining the inverse of moment of inertia. We have studied the quantum dynamics of Fe10_{10} as a representative of ferric wheels. We use the low-lying states of Fe10_{10} to solve exactly the time-dependent Schr\"odinger equation and find the magnetization of the molecule in the presence of an alternating magnetic field at zero temperature. We observe a nontrivial oscillation of magnetization which is dependent on the amplitude of the {\it ac} field. We have also studied the torque response of Fe12_{12} as a function of magnetic field, which clearly shows spin-state crossover.Comment: Revtex, 24 pages, 8 eps figure

    The Role of Structural Flexibility in Plasmon Driven Coupling Reactions Kinetic Limitations in the Dimerization of Nitro Benzenes

    Get PDF
    Abstract The plasmon-driven dimerization of 4-nitrothiophenol (4NTP) to 4-4′-dimercaptoazobenzene (DMAB) is a testbed for understanding bimolecular photoreactions enhanced by nanoscale metals, in particular, regarding the relevance of electron transfer and heat transfer from the metal to the molecule. By adding a methylene group between the thiol bond and the nitrophenyl, structural flexibility is added to the reactant molecule. Time-resolved surface-enhanced Raman-spectroscopy proves that this (4-nitrobenzyl)mercaptan (4NBM) molecule has a larger dimerization rate and dimerization yield than 4NTP and higher selectivity toward dimerization. X-ray photoelectron spectroscopy and density functional theory calculations show that the electron transfer prefers activation of 4NTP over 4NBM. It is concluded that the rate limiting step of this plasmonic reaction is the dimerization step, which is dramatically enhanced by the additional flexibility of the reactant. This study may serve as an example for using nanoscale metals to simultaneously provide charge carriers for bond activation and localized heat for driving bimolecular reaction steps. The molecular structure of reactants can be tuned to control the reaction kinetics

    Neel probability and spin correlations in some nonmagnetic and nondegenerate states of hexanuclear antiferromagnetic ring Fe6: Application of algebraic combinatorics to finite Heisenberg spin systems

    Full text link
    The spin correlations \omega^z_r, r=1,2,3, and the probability p_N$ of finding a system in the Neel state for the antiferromagnetic ring Fe(III)6 (the so-called `small ferric wheel') are calculated. States with magnetization M=0, total spin 0<=S<=15 and labeled by two (out of four) one-dimensional irreducible representations (irreps) of the point symmetry group D_6 are taken into account. This choice follows from importance of these irreps in analyzing low-lying states in each S-multiplet. Taking into account the Clebsch--Gordan coefficients for coupling total spins of sublattices (SA=SB=15/2) the global Neel probability p*_N can be determined. Dependencies of these quantities on state energy (per bond and in the units of exchange integral J) and the total spin S are analyzed. Providing we have determined p_N(S) etc. for other antiferromagnetic rings (Fe10, for instance) we could try to approximate results for the largest synthesized ferric wheel Fe18. Since thermodynamic properties of Fe6 have been investigated recently, in the present considerations they are not discussed, but only used to verify obtained values of eigenenergies. Numerical results re calculated with high precision using two main tools: (i) thorough analysis of symmetry properties including methods of algebraic combinatorics and (ii) multiple precision arithmetic library GMP. The system considered yields more than 45 thousands basic states (the so-called Ising configurations), but application of the method proposed reduces this problem to 20-dimensional eigenproblem for the ground state (S=0). The largest eigenproblem has to be solved for S=4; its dimension is 60. These two facts (high precision and small resultant eigenproblems) confirm efficiency and usefulness of such an approach, so it is briefly discussed here.Comment: 13 pages, 7 figs, 5 tabs, revtex
    • …
    corecore