9 research outputs found

    Morphometric study of Yemeni (Apis mellifera jemenitica) and Carniolan (A. m. carnica) honeybee workers in Saudi Arabia.

    No full text
    The Yemeni honeybee (Apis mellifera jemenitica Ruttner) is the native race in Saudi Arabia. The Carniolan honeybee (A. m. carnica Pollmann) and its hybrid with the Egyptian honeybee (A. m. lamarkii Cockerell) have been imported and frequently reared in Saudi Arabia. Temperature often exceed 40 °C during the summer season in most regions of Saudi Arabia. Honeybees decrease foraging activity in this period during mid-day, which affect colony productivity. The Yemeni bee race appears well adapted to these unique climatic conditions. We compared body weight and morphometric parameters of both subspecies' worker bees reared at the apiary of Training and Research Station, King Faisal University, Al-Ahsa oasis of eastern Saudi Arabia. Measurements of Yemeni bee were smaller than Carniolan bee for body weight, head structures, including antenna, flagellum, and proboscis length, thorax appendages, including femur length, tibia length and width, metatarsus length and width of the right hind leg, and length and width of the right forewing and hind wing, abdominal characteristics, including the length of the 3rd and 4th abdominal tergites and sternites, and length and width of the 1st and 4th wax mirrors. It could be concluded that with the exception of the number of hamuli, worker Yemeni bee body size and morphometric parameters related to the colony productivity were smaller than Carniolan bees under environmental conditions of the study region

    A Comparative Assessment of Hygienic Behavior of Carniolan (Apismelliferacarnica Pollmann) and Yemeni (Apismellifera jemenitica Ruttner) Honeybees Using Infra-Red Photography Video Recording

    No full text
    The use of infra-red photography video recording is very useful for conducting behavioristic studies of honeybees against many brood diseases. The removal of dead or diseased brood from capped cells by honeybee workers is a heritable trait that confers colony-level resistance. This work aimed to compare the hygienic behavior of the native (Yemeni bees, A. mellifera jemenitica) and the exotic (Carniolan bees, A. m. carnica) honeybee races in Saudi Arabia using an infra-red photography video recording. In addition, hygienic behavior towards the related and non-related combs was examined. Therefore, it is possible to obtain honeybee colonies with greater disease resistance. The pin-killing method and infra-red photography video recording were used for the evaluation of hygienic behavior in colonies of the two races. Significant differences in hygienic behavior between the two races were detected at the beginning of the experiment. Under the environmental conditions of eastern Saudi Arabia, the Yemeni honeybee colonies showed a higher number of uncapped and cleaned cells containing dead brood in either the brood comb from the same colony, or the brood comb from the same race but a different colony, or brood comb from a different race. It was concluded that the honeybee’s ability to detect and clean the dead brood from comb cells can be correlated with race and it is more efficient for the non-related individuals of the same race than from a related or another race. The outstanding performance of a few individuals in the expression of various traits indicates their usefulness in carrying out breeding programs for Varroa resistance

    A Comparative Assessment of Hygienic Behavior of Carniolan (<i>Apis</i><i>mellifera</i><i>carnica</i> Pollmann) and Yemeni (<i>Apis</i><i>mellifera jemenitica</i> Ruttner) Honeybees Using Infra-Red Photography Video Recording

    No full text
    The use of infra-red photography video recording is very useful for conducting behavioristic studies of honeybees against many brood diseases. The removal of dead or diseased brood from capped cells by honeybee workers is a heritable trait that confers colony-level resistance. This work aimed to compare the hygienic behavior of the native (Yemeni bees, A. mellifera jemenitica) and the exotic (Carniolan bees, A. m. carnica) honeybee races in Saudi Arabia using an infra-red photography video recording. In addition, hygienic behavior towards the related and non-related combs was examined. Therefore, it is possible to obtain honeybee colonies with greater disease resistance. The pin-killing method and infra-red photography video recording were used for the evaluation of hygienic behavior in colonies of the two races. Significant differences in hygienic behavior between the two races were detected at the beginning of the experiment. Under the environmental conditions of eastern Saudi Arabia, the Yemeni honeybee colonies showed a higher number of uncapped and cleaned cells containing dead brood in either the brood comb from the same colony, or the brood comb from the same race but a different colony, or brood comb from a different race. It was concluded that the honeybee’s ability to detect and clean the dead brood from comb cells can be correlated with race and it is more efficient for the non-related individuals of the same race than from a related or another race. The outstanding performance of a few individuals in the expression of various traits indicates their usefulness in carrying out breeding programs for Varroa resistance

    Comparison of the activity and productivity of Carniolan (Apis mellifera carnica Pollmann) and Yemeni (Apis mellifera jemenitica Ruttner) subspecies under environmental conditions of the Al-Ahsa oasis of eastern Saudi Arabia

    No full text
    This study was conducted at the apiary of the Agricultural and Veterinary Training and Research Station of King Faisal University in the Al-Ahsa oasis of eastern Saudi Arabia. We performed a comparison between Carniolan (Apis mellifera carnica Pollmann) and Yemeni (Apis mellifera jemenitica Ruttner) honeybee races to determine the monthly fluctuations in foraging activity, pollen collection, colony growth and honey yield production under the environmental conditions of the Al-Ahsa oasis of eastern Saudi Arabia. We found three peaks in the flight activity of the two races, and the largest peaks occurred during September and October. Compared to Carniolan bee colonies, the performance of Yemeni bee colonies was superior in terms of stored pollen, worker and drone brood rearing, and the adult population size. The Carniolan bee colonies produced 27.77% and 27.50% more honey than the Yemeni bee colonies during the flow seasons of alfalfa and sidir, respectively, with an average increase of 27.64%. It could be concluded that the race of bees is an important factor affecting the activity and productivity of honeybee colonies. The Yemeni bee race produced more pollen, a larger brood and more bees, which exhibited a longer survival. The imported Carniolan bees can be reared in eastern Saudi Arabia, but the Yemeni bee race is still better. Keywords: Apis mellifera carnica, A. m. jemenitica, Foraging, Brood, Pollen, Honey, Al-Ahs

    Are Honey Bees at Risk from Microplastics?

    No full text
    Microplastics (MPs) are ubiquitous and persistent pollutants, and have been detected in a wide variety of media, from soils to aquatic systems. MPs, consisting primarily of polyethylene, polypropylene, and polyacrylamide polymers, have recently been found in 12% of samples of honey collected in Ecuador. Recently, MPs have also been identified in honey bees collected from apiaries in Copenhagen, Denmark, as well as nearby semiurban and rural areas. Given these documented exposures, assessment of their effects is critical for understanding the risks of MP exposure to honey bees. Exposure to polystyrene (PS)-MPs decreased diversity of the honey bee gut microbiota, followed by changes in gene expression related to oxidative damage, detoxification, and immunity. As a result, the aim of this perspective was to investigate whether wide-spread prevalence of MPs might have unintended negative effects on health and fitness of honey bees, as well as to draw the scientific community's attention to the possible risks of MPs to the fitness of honey bees. Several research questions must be answered before MPs can be considered a potential threat to bees

    Harvest Season Significantly Influences the Fatty Acid Composition of Bee Pollen

    No full text
    Seasonal variations in the fatty acid (FA) compositions of pollen loads collected from the Al-Ahsa Oasis in eastern Saudi Arabia throughout one year were determined to identify the optimal season for harvesting bee pollen rich in essential fatty acids (EFAs) and unsaturated fatty acids (UFAs). The highest values (%) of lipids, linolenic acid (C18:3), stearic acid (C18:0), linoleic acid (C18:2), arachidic acid (C20:0), the sum of the C18:0, C18:1, C18:2, and C18:3 concentrations, and EFAs were obtained from bee pollen harvested during autumn. The maximum values (%) of oleic acid (C18:1), palmitic acid (C16:0), UFAs, and the UFA/saturated fatty acid (SFA) ratio were found in bee pollen harvested during summer. The highest concentrations (%) of behenic acid (C22:0), lignoceric acid (C24:0), and SFAs were found in bee pollen harvested during winter. Bee pollen harvested during spring ranked second in its oleic, palmitic, linolenic, stearic, arachidic, behenic, and lignoceric acid concentrations and for EFAs, UFAs, and the UFA/SFA ratio. The lowest SFA concentration was found in bee pollen harvested during summer. Oleic, palmitic, and linolenic acids were the most predominant FAs found in bee pollen. It was concluded that the FA composition of bee pollen varied among the harvest seasons due to the influence of the dominant botanical origins. We recommend harvesting pollen loads during spring and summer to feed honeybee colonies during periods of scarcity and for use as a healthy, nutritious food for humans

    Effect of harvest season on the nutritional value of bee pollen protein.

    No full text
    Bee pollen is a natural product that has valuable nutritional and medicinal characteristics and has recently garnered increasing attention in the food industry due to its nutritive value. Here, we harvested pollen loads from the Al-Ahsa oasis in eastern Saudi Arabia during spring, summer, autumn, and winter in 2018/2019 to compare the nutritional value of bee pollen protein with the amino acid requirements of honeybees and adult humans. Based on the nutritional value of bee pollen protein, the optimal season for harvesting bee pollen was determined. The composition of the bee pollen showed the highest contents of crude protein, total amino acids, leucine, glutamic acid, valine, isoleucine, threonine, and glycine in samples collected in spring. The highest contents of lysine, phenylalanine, threonine, tryptophan, arginine, tyrosine, and cysteine were observed in samples collected in winter. The highest contents of histidine, methionine, and serine were in samples collected in autumn. Moreover, the highest levels of aspartic acid, proline, and alanine were in samples collected in summer. Leucine, valine, lysine, histidine, threonine, and phenylalanine (except in autumn bee pollen) contents in pollen from all four seasons were above the requirements of honeybees. Leucine, valine, histidine, isoleucine (except in autumn bee pollen), lysine (except in spring and summer bee pollen), and threonine (except in winter and spring bee pollen) in all tested samples were above the requirements of adult humans. In comparison with the minimal amino acid requirements of adult humans and honeybees, the 1st limiting amino acid in bee pollen collected during the different seasons was methionine. Bee pollen collected during spring (March-May) and winter (December-February) can be considered a nutritive food source for adult humans and honeybees
    corecore