9 research outputs found

    Value of large scale expansion of tumor infiltrating lymphocytes in a compartmentalised gas-permeable bag: interests for adoptive immunotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adoptive cell therapy (ACT) has emerged as an effective treatment for patients with metastatic melanoma. However, there are several logistical and safety concerns associated with large-scale <it>ex vivo </it>expansion of tumour-specific T lymphocytes for widespread availability of ACT for cancer patients. To address these problems we developed a specific compartmentalised bag allowing efficient expansion of tumour-specific T lymphocytes in an easy handling, closed system.</p> <p>Methods</p> <p>Starting from lymph nodes from eight melanoma patients, we performed a side-by-side comparison of Tumour-Infiltrating Lymphocytes (TIL) produced after expansion in the compartmentalised bag versus TIL produced using the standard process in plates. Proliferation yield, viability, phenotype and IFNÎł secretion were comparatively studied.</p> <p>Results</p> <p>We found no differences in proliferation yield and cell viability between both TIL production systems. Moreover, each of the cell products complied with our defined release criteria before being administered to the patient. The phenotype analysis indicated that the compartmentalised bag favours the expansion of CD8+ cells. Finally, we found that TIL stimulated in bags were enriched in reactive CD8+ T cells when co-cultured with the autologous melanoma cell line.</p> <p>Conclusions</p> <p>The stimulation of TIL with feeder cells in the specifically designed compartmentalised bag can advantageously replace the conventional protocol using plates. In particular, the higher expansion rate of reactive CD8+ T cells could have a significant impact for ACT.</p

    The doubling potential of T lymphocytes allows clinical-grade production of a bank of genetically modified monoclonal T-cell populations

    No full text
    International audienceBackground aims. To produce an anti-leukemic effect after hematopoietic stem cell transplantation we have long considered the theoretical possibility of using banks of HLA-DP specific T-cell clones transduced with a suicide gene. For that application as for any others, a clonal strategy is constrained by the population doubling (PD) potential of T cells, which has been rarely explored or exploited. Methods. We used clinical-grade conditions and two donors who were homozygous and identical for all HLA-alleles except HLA-DP. After mixed lymphocyte culture and transduction, we obtained 14 HLA-DP–specific T-cell clones transduced with the HSV-TK suicide gene. Clones were then selected on the basis of their specificity and functional characteristics and evaluated for their doubling potential. Results. After these steps of selection the clone NAT-DP4[(TK)], specific for HLA-DPB1*04:01/04:02, which produced high levels of interferon-γ (IFNγ), tumor necrosis factor (TNF), interleukin-2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF), was fully sequenced. It has two copies of the HSV-TK suicide transgene whose localizations were determined. Four billion NAT-DP4[(TK)] cells were frozen after 50 PDs. Thawed NAT-DP4[(TK)] cells retain the potential to undergo 50 additional PDs, a potential very far beyond that required to produce a biological effect. This PD potential was confirmed on 6/16 additional different T-cell clones. This type of well-defined clone can also support a second genetic modification with CAR constructs. Conclusion. The possibility of choosing rare donors and exploiting the natural proliferative potential of T lymphocytes may dramatically reduce the clinical and immunologic complexity of adoptive transfer protocols that rely on the use of third-party T-cell populations

    Treatment of Metastatic Melanoma with Autologous Melan-A/Mart-1-Specific Cytotoxic T Lymphocyte Clones

    No full text
    International audienceImmunotherapy by adoptive T-cell transfer aims at maximizing tumor antigen-specific T-cell responses. We treated 14 patients at the metastatic stage in a phase II study with Melan-A-specific T-cell clones generated from patient blood. During the period required for T-cell clone generation, the patients were treated by dacarbazine. Every patient received a T-cell clone suspension followed by subcutaneous injections of interleukin 2 and interferon alpha. Patients were monitored until disease progression occurred. We succeeded in obtaining autologous Melan-A-specific cytotoxic T lymphocyte clones, which were highly reactive against tumor cells for all the patients. Of the 14 patients treated, six (43%) experienced an objective response (CR Ăľ PR) with long-term complete remission for two patients (1 CR for 5 years and 1 CR for 28 months). Furthermore, we showed that all the clinical responses were significantly associated with in vivo expansion of the Melan-A-specific T-cell repertoire. This phenomenon appeared to be significantly associated with clinical responses. Thus, over the course of an adoptive cell transfer, monitoring this melanoma-specific T-cell expansion in patient blood appears crucial for predicting the clinical efficiency of such an immunological approach

    Preclinical Assessment of Autologous Tolerogenic Dendritic Cells From End-stage Renal Disease Patients

    No full text
    International audienceBackground: Kidney transplantation is the therapeutic of choice for patients with kidney failure. While immunosuppressive drugs can control graft rejection, their use is associated with increased infections and cancer, and they do not effectively control chronic graft rejection. Cell therapy is an attractive strategy to minimize the use of pharmacological drugs.Methods: We recently developed a protocol to generate human monocyte-derived autologous tolerogenic dendritic cells (ATDCs) from healthy volunteers. Herein, we transferred the ATDC manufacturing protocol to a Good Manufacturing Practice (GMP)-compliant facility. Furthermore, we compared the phenotype and in vitro functions of ATDCs generated from patients with end-stage renal disease to those generated from healthy volunteers.Results: We describe the critical steps for GMP-compliant production of ATDCs and define the quality criteria required to allow release of the cell products. Furthermore, we showed that ATDCs generated from healthy volunteers and patients with kidney failure display the same tolerogenic profile based on their phenotype, resistance to maturation, and ability to modulate T-cell responses.Conclusions: Together, these results allowed us to define the production process and the quality criteria for the release of ATDCs before their administration in patients receiving a kidney transplant

    Tumor infiltrating lymphocytes as adjuvant treatment in stage III melanoma patients with only one invaded lymph node after complete resection: results from a multicentre, randomized clinical phase III trial

    No full text
    International audienceBackground: Adoptive tumor-infiltrating lymphocytes (TIL) therapy and interleukin-2 (IL-2) have been investigated in melanoma.Aim: To confirm previously observed preventive effects of TIL + IL2 in a subgroup of patients with relapsing metastatic stage III melanoma.Methodology: Open-label, randomized two-group, multicenter five-year trial in adult stage III melanoma patients with only one invaded lymph node after complete resection. Patients received TIL + IL2 or abstention. TIL + IL2 was administered within 8 weeks after lymph node resection and 4 weeks after. Disease-free survival was assessed every 2 months up to month 18, every 3 months up to month 36 and every 4 months up to 5 years. A once-a-year follow-up was scheduled beyond the five-year follow-up. Safety was assessed throughout the trial.Results: Overall, 49 patients accounted for the modified intent-to-treat and 47 for the PP. Slightly more male than female patients participated; mean age was 57.7 ± 11.4 years in the TIL + IL2 group and 53.5 ± 13.0 years in the abstention group. After 5 years of follow-up, 11/26 patients in the TIL + IL2 group and 13/23 in the abstention group had relapsed. There was no statistical difference between the groups (HR: 0.63 CI 95% [0.28-1.41], p = 0.258), nine patients in the TIL + IL2 and 11 in the abstention group died with no significant difference between the two groups (HR: 0.65 CI95% [0.27 - 1.59], p = 0.34). Safety was good.Conclusion: We did not confirm results of a previous trial. However, ulceration of the primary melanoma may be considered predictive of the efficacy of TIL in melanoma in adjuvant setting, in a manner similar to interferon α

    CICAFAST: comparison of a biological dressing composed of fetal fibroblasts and keratinocytes on a split-thickness skin graft donor site versus a traditional dressing: a randomized controlled trial

    No full text
    International audienceBACKGROUND:Wound repair is one of the most complex biological processes of human life. Allogeneic cell-based engineered skin substitutes provide off-the-shelf temporary wound coverage and act as biologically active dressings, releasing growth factors, cytokines and extracellular matrix components essential for proper wound healing. However, they are susceptible to immune rejection and this is their major weakness. Thanks to their low immunogenicity and high effectiveness in regeneration, fetal skin cells represent an attractive alternative to the commonly used autologous and allogeneic skin grafts.METHODS/DESIGN:We developed a new dressing comprising a collagen matrix seeded with a specific ratio of active fetal fibroblasts and keratinocytes. These produce a variety of healing growth factors and cytokines which will increase the speed of wound healing and induce an immunotolerant state, with a slight inflammatory reaction and a reduction in pain. The objective of this study is to demonstrate that the use of this biological dressing for wound healing at the split-thickness skin graft (STSG) donor site, reduces the time to healing, decreases other co-morbidities, such as pain, and improves the appearance of the scar. This investigation will be conducted as part of a randomized study comparing our new biological dressing with a conventional treatment in a single patient, thus avoiding the factors that may influence the healing of a graft donor site.DISCUSSION:This clinical trial should enable the development of a new strategy for STSG donor-wound healing based on a regenerative dressing. The pain experienced in the first few days of STSG healing is well known due to the exposure of sensory nerve endings. Reducing this pain will also reduce analgesic drug intake and the duration of sick leave. Our biological dressing will meet the essential need of surgeons to "re-crop" from existing donor sites, e.g., for thermal-burn patients. By accelerating healing, improving the appearance of the scar and reducing pain, we hope to improve the conditions of treatment for skin grafts.TRIAL REGISTRATION:ClinicalTrials.gov, ID: NCT03334656 . Registered on 7 November 2017

    T-cell therapy using a bank of EBV-specific cytotoxic T cells: lessons from a phase I/II feasibility and safety study.

    No full text
    International audienceWe report herein the results we obtained and the limitations we experienced during the production and use of a bank of Epstein-Barr virus (EBV)-transformed human cytotoxic T lymphocytes (EBV-CTLs). To assess the feasibility and toxicity of this strategy, we selected and stored, in liquid nitrogen, 4 billion EBV-CTLs from each of the 13 selected donors. Subsequently, in a multicenter phase I/II study, 11 patients with EBV-associated lymphoma resistant to conventional treatments received 1-3 doses of 5 million EBV-CTLs/kg with 1-3 and 0-4 compatibilities for human leukocyte antigen (HLA)-I and HLA-II, respectively. Except for one event of fever after injection, no immediate or delayed toxicity, no graft versus host disease, and no graft rejection attributable to CTL infusion were observed. Three patients presented complete remission and 1 partial remission after treatment. Considering the clinical options currently available, and the constrains associated with CTL preparation and implementation, we conclude that CTL banks should consist of a reasonably small number of cell lines with documented specificities. This objective could be more easily achieved if the few homozygous donors for the most frequent HLA alleles of the targeted population could be made available for such a project

    A Phase I/IIa study of autologous tolerogenic dendritic cells immunotherapy in kidney transplant recipients

    No full text
    International audienceKidney transplant survival is shortened by chronic rejection and side effects of standard immunosuppressive drugs. Cell-based immunotherapy with tolerogenic dendritic cells has long been recognized as a promising approach to reduce general immunosuppression. Published trials report the safety and the absence of therapy-related adverse reactions in patients treated with tolerogenic dendritic cells suffering from several inflammatory diseases. Here, we present the first phase I clinical trial results using human autologous tolerogenic dendritic cells (ATDC) in kidney transplantation. Eight patients received ATDC the day before transplantation in conjunction with standard steroids, mycophenolate mofetil and tacrolimus immunosuppression with an option to taper mycophenolate mofetil. ATDC preparations were manufactured in a Good Manufacturing Practice-compliant facility and fulfilled cell count, viability, purity and identity criteria for release. A control group of nine patients received the same standard immunosuppression, except basiliximab induction replaced ATDC therapy and mycophenolate tapering was not allowed. During the three-year follow-up, no deaths occurred and there was 100% graft survival. No significant increase of adverse events was associated with ATDC infusion. Episodes of rejection were observed in two patients from the ATDC group and one patient from the control group. However, all rejections were successfully treated by glucocorticoids. Mycophenolate was successfully reduced/stopped in five patients from the ATDC group, allowing tacrolimus monotherapy for two of them. Regarding immune monitoring, reduced CD8 T cell activation markers and increased Foxp3 expression were observed in the ATDC group. Thus, our results demonstrate ATDC administration safety in kidney-transplant recipients
    corecore