1,643 research outputs found

    Conductivity and redox stability of new double perovskite oxide Sr 1.6 K 0.4 Fe 1+ x Mo 1− x O 6− δ (x= 0.2, 0.4, 0.6)

    Get PDF
    A series of new perovskite oxides Sr1.6K0.4Fe1+xMo1−xO6−δ (x = 0.2, 0.4, 0.6) were synthesised by solid state reaction method. Synthesis of Sr1.6K0.4Fe1+xMo1−xO6−δ (x = 0.2, 0.4, 0.6) was achieved above 700 °C in 5 % H2/Ar, albeit with the formation of impurity phases. Phase stability upon redox cycling was only observed for sample Sr1.6K0.4Fe1.4Mo0.6O6−δ. Redox cycling of Sr1.6K0.4Fe1+xMo1−xO6−δ (x = 0.2, 0.4, 0.6) demonstrates a strong dependence on high temperature reduction to achieve high conductivities. After the initial reduction at 1200 °C in 5 %H2/Ar, then re-oxidation in air at 700 °C and further reduction at 700 °C in 5 %H2/Ar, the attained conductivities were between 0.1 and 58.4 % of the initial conductivity after reduction 1200 °C in 5 %H2/Ar depending on the composition. In the investigated new oxides, sample Sr1.6K0.4Fe1.4Mo0.6O6−δ is most redox stable also retains reasonably high electrical conductivity, ~70 S/cm after reduction at 1200 °C and 2–3 S/cm after redox cycling at 700 °C, indicating it is a potential anode for SOFCs

    Polymeric diaqua-8-hydroxyquinolinyl-5-sulfonatozinc(II)

    Get PDF
    The crystal structure of polymeric diaqua-8-hydroxyquinolinyl-5-sulfonatozinc(II) consists of a centrosymmetric (C9H5NO4S)(2)(H2O)(2)Zn-2 entity which is linked into a network structure by intermolecular sulfonyl bridges. The network is further consolidated by hydrogen bonds involving the coordinated water molecules

    Phase I/II study of the deacetylase inhibitor panobinostat after allogeneic stem cell transplantation in patients with high-risk MDS or AML (PANOBEST trial)

    Get PDF
    Maintenance therapy after allogeneic hematopoietic stem cell transplantation (HSCT) for acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) is conceptually attractive to prevent relapse, but has been hampered by the limited number of suitable anti-leukemic agents. The deacetylase inhibitor (DACi) panobinostat demonstrated moderate anti-leukemic activity in a small subset of patients with advanced AML and high-risk MDS in phase I/II trials.1, 2 It also displays immunomodulatory activity3 that may enhance leukemia-specific cytotoxicity4 and mitigate graft versus host disease (GvHD), but conversely could impair T- and NK cell function.5, 6 We conducted this open-label, multi-center phase I/II trial (NCT01451268) to assess the feasibility and preliminary efficacy of prolonged prophylactic administration of panobinostat after HSCT for AML or MDS. The study protocol was approved by an independent ethics committee and conducted in compliance with the Declaration of Helsinki. All patients provided written informed consent. ..

    Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve injury

    Get PDF
    The anterior cingulate cortex (ACC) is important for cognitive and sensory functions including memory and chronic pain. Glutamatergic excitatory synaptic transmission undergo long-term potentiation in ACC pyramidal cells after peripheral injury. Less information is available for the possible long-term changes in neuronal action potentials or intrinsic properties. In the present study, we characterized cingulate pyramidal cells in the layer II/III of the ACC in adult mice. We then examined possible long-term changes in intrinsic properties of the ACC pyramidal cells after peripheral nerve injury. In the control mice, we found that there are three major types of pyramidal cells according to their action potential firing pattern: (i) regular spiking (RS) cells (24.7%), intrinsic bursting (IB) cells (30.9%), and intermediate (IM) cells (44.4%). In a state of neuropathic pain, the population distribution (RS: 21.3%; IB: 31.2%; IM: 47.5%) and the single action potential properties of these three groups were indistinguishable from those in control mice. However, for repetitive action potentials, IM cells from neuropathic pain animals showed higher initial firing frequency with no change for the properties of RS and IB neurons from neuropathic pain mice. The present results provide the first evidence that, in addition to synaptic potentiation reported previously, peripheral nerve injury produces long-term plastic changes in the action potentials of cingulate pyramidal neurons in a cell type-specific manner

    Regulation of Classical Cadherin Membrane Expression and F-Actin Assembly by Alpha-Catenins, during Xenopus Embryogenesis

    Get PDF
    Alpha (α)-E-catenin is a component of the cadherin complex, and has long been thought to provide a link between cell surface cadherins and the actin skeleton. More recently, it has also been implicated in mechano-sensing, and in the control of tissue size. Here we use the early Xenopus embryos to explore functional differences between two α-catenin family members, α-E- and α-N-catenin, and their interactions with the different classical cadherins that appear as tissues of the embryo become segregated from each other. We show that they play both cadherin-specific and context-specific roles in the emerging tissues of the embryo. α-E-catenin interacts with both C- and E-cadherin. It is specifically required for junctional localization of C-cadherin, but not of E-cadherin or N-cadherin at the neurula stage. α-N-cadherin interacts only with, and is specifically required for junctional localization of, N-cadherin. In addition, α -E-catenin is essential for normal tissue size control in the non-neural ectoderm, but not in the neural ectoderm or the blastula. We also show context specificity in cadherin/ α-catenin interactions. E-cadherin requires α-E-catenin for junctional localization in some tissues, but not in others, during early development. These specific functional cadherin/alpha-catenin interactions may explain the basis of cadherin specificity of actin assembly and morphogenetic movements seen previously in the neural and non-neural ectoderm

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    Estimation of progression of multi-state chronic disease using the Markov model and prevalence pool concept

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We propose a simple new method for estimating progression of a chronic disease with multi-state properties by unifying the prevalence pool concept with the Markov process model.</p> <p>Methods</p> <p>Estimation of progression rates in the multi-state model is performed using the E-M algorithm. This approach is applied to data on Type 2 diabetes screening.</p> <p>Results</p> <p>Good convergence of estimations is demonstrated. In contrast to previous Markov models, the major advantage of our proposed method is that integrating the prevalence pool equation (that the numbers entering the prevalence pool is equal to the number leaving it) into the likelihood function not only simplifies the likelihood function but makes estimation of parameters stable.</p> <p>Conclusion</p> <p>This approach may be useful in quantifying the progression of a variety of chronic diseases.</p

    Hypoglycemia and Death in Mice Following Experimental Exposure to an Extract of Trogia venenata Mushrooms

    Get PDF
    BACKGROUND: Clusters of sudden unexplained death (SUD) in Yunnan Province, China, have been linked to eating Trogia venenata mushrooms. We evaluated the toxic effect of this mushroom on mice. METHODS: We prepared extracts of fresh T. venenata and Laccaria vinaceoavellanea mushrooms collected from the environs of a village that had SUD. We randomly allocated mice into treatment groups and administered mushroom extracts at doses ranging from 500 to 3500 mg/kg and water (control) via a gavage needle. We observed mice for mortality for 7 days after a 3500 mg/kg dose and for 24 hours after doses from 500 to 3000 mg/kg. We determined biochemical markers from serum two hours after a 2000 mg/kg dose. RESULTS: Ten mice fed T. venenata extract (3500 mg/kg) died by five hours whereas all control mice (L. vinaceoavellanea extract and water) survived the seven-day observation period. All mice died by five hours after exposure to single doses of T. venenata extract ranging from 1500 to 3000 mg/kg, while the four mice exposed to a 500 mg/kg dose all survived. Mice fed 2000 mg/kg of T. venenata extract developed profound hypoglycemia (median= 0.66 mmol/L) two hours after exposure. DISCUSSION: Hypoglycemia and death within hours of exposure, a pattern unique among mushroom toxicity, characterize T. venenata poisoning
    corecore