106 research outputs found

    Edge-Aware Extended Star-Tetrix Transforms for CFA-Sampled Raw Camera Image Compression

    Full text link
    Codecs using spectral-spatial transforms efficiently compress raw camera images captured with a color filter array (CFA-sampled raw images) by changing their RGB color space into a decorrelated color space. This study describes two types of spectral-spatial transform, called extended Star-Tetrix transforms (XSTTs), and their edge-aware versions, called edge-aware XSTTs (EXSTTs), with no extra bits (side information) and little extra complexity. They are obtained by (i) extending the Star-Tetrix transform (STT), which is one of the latest spectral-spatial transforms, to a new version of our previously proposed wavelet-based spectral-spatial transform and a simpler version, (ii) considering that each 2-D predict step of the wavelet transform is a combination of two 1-D diagonal or horizontal-vertical transforms, and (iii) weighting the transforms along the edge directions in the images. Compared with XSTTs, the EXSTTs can decorrelate CFA-sampled raw images well: they reduce the difference in energy between the two green components by about 3.383.38--30.0830.08 \% for high-quality camera images and 8.978.97--14.4714.47 \% for mobile phone images. The experiments on JPEG 2000-based lossless and lossy compression of CFA-sampled raw images show better performance than conventional methods. For high-quality camera images, the XSTTs/EXSTTs produce results equal to or better than the conventional methods: especially for images with many edges, the type-I EXSTT improves them by about 0.030.03--0.190.19 bpp in average lossless bitrate and the XSTTs improve them by about 0.160.16--0.960.96 dB in average Bj\o ntegaard delta peak signal-to-noise ratio. For mobile phone images, our previous work perform the best, whereas the XSTTs/EXSTTs show similar trends to the case of high-quality camera images

    Regularity-Constrained Fast Sine Transforms

    Full text link
    This letter proposes a fast implementation of the regularity-constrained discrete sine transform (R-DST). The original DST \textit{leaks} the lowest frequency (DC: direct current) components of signals into high frequency (AC: alternating current) subbands. This property is not desired in many applications, particularly image processing, since most of the frequency components in natural images concentrate in DC subband. The characteristic of filter banks whereby they do not leak DC components into the AC subbands is called \textit{regularity}. While an R-DST has been proposed, it has no fast implementation because of the singular value decomposition (SVD) in its internal algorithm. In contrast, the proposed regularity-constrained fast sine transform (R-FST) is obtained by just appending a regularity constraint matrix as a postprocessing of the original DST. When the DST size is M×MM\times M (M=2M=2^\ell, N1\ell\in\mathbb{N}_{\geq 1}), the regularity constraint matrix is constructed from only M/21M/2-1 rotation matrices with the angles derived from the output of the DST for the constant-valued signal (i.e., the DC signal). Since it does not require SVD, the computation is simpler and faster than the R-DST while keeping all of its beneficial properties. An image processing example shows that the R-FST has fine frequency selectivity with no DC leakage and higher coding gain than the original DST. Also, in the case of M=8M=8, the R-FST saved approximately 0.1260.126 seconds in a 2-D transformation of 512×512512\times 512 signals compared with the R-DST because of fewer extra operations

    Lightning-Fast Dual-Layer Lossless Coding for Radiance Format High Dynamic Range Images

    Full text link
    This paper proposes a fast dual-layer lossless coding for high dynamic range images (HDRIs) in the Radiance format. The coding, which consists of a base layer and a lossless enhancement layer, provides a standard dynamic range image (SDRI) without requiring an additional algorithm at the decoder and can losslessly decode the HDRI by adding the residual signals (residuals) between the HDRI and SDRI to the SDRI, if desired. To suppress the dynamic range of the residuals in the enhancement layer, the coding directly uses the mantissa and exponent information from the Radiance format. To further reduce the residual energy, each mantissa is modeled (estimated) as a linear function, i.e., a simple linear regression, of the encoded-decoded SDRI in each region with the same exponent. This is called simple linear regressive mantissa estimator. Experimental results show that, compared with existing methods, our coding reduces the average bitrate by approximately 1.571.57-6.686.68 % and significantly reduces the average encoder implementation time by approximately 87.1387.13-98.9698.96 %

    M-Channel Fast Hartley Transform Based Integer DCT for Lossy-to-Lossless Image Coding

    Get PDF
    This paper presents an M-channel (M=2n (n ∈ N)) integer discrete cosine transforms (IntDCTs) based on fast Hartley transform (FHT) for lossy-to-lossless image coding which has image quality scalability from lossy data to lossless data. Many IntDCTs with lifting structures have already been presented to achieve lossy-to-lossless image coding. Recently, an IntDCT based on direct-lifting of DCT/IDCT, which means direct use of DCT and inverse DCT (IDCT) to lifting blocks, has been proposed. Although the IntDCT shows more efficient coding performance than any conventional IntDCT, it entails many computational costs due to an extra information that is a key point to realize its direct-lifting structure. On the other hand, the almost conventional IntDCTs without an extra information cannot be easily expanded to a larger size than the standard size M=8, or the conventional IntDCT should be improved for efficient coding performance even if it realizes an arbitrary size. The proposed IntDCT does not need any extra information, can be applied to size M=2n for arbitrary n, and shows better coding performance than the conventional IntDCTs without any extra information by applying the direct-lifting to the pre- and post-processing block of DCT. Moreover, the proposed IntDCT is implemented with a half of the computational cost of the IntDCT based on direct-lifting of DCT/IDCT even though it shows the best coding performance

    Dual-DCT-Lifting-Based Lapped Transform with Improved Reversible Symmetric Extension

    Get PDF
    We present a lifting-based lapped transform (L-LT) and a reversible symmetric extension (RSE) in the boundary processing for more effective lossy-to-lossless image coding of data with various qualities from only one piece of lossless compressed data. The proposed dual-DCT-lifting-based LT (D2L-LT) parallel processes two identical LTs and consists of 1-D and 2-D DCT-liftings which allow the direct use of a DCT matrix in each lifting coefficient. Since the DCT-lifting can utilize any existing DCT software or hardware, it has great potential for elegant implementations that are dependent on the architecture and DCT algorithm used. In addition, we present an improved RSE (IRSE) that works by recalculating the boundary processing and solves the boundary problem that the DCT-lifting-based L-LT (DL-LT) has. We show that D2L-LT with IRSE mostly outperforms conventional L-LTs in lossy-to-lossless image coding

    Urinary Retention as an Initial Symptom of Acute Meningo-Encephalo-Radiculitis in Epstein-Barr Virus Infection

    Get PDF
    A 48-year-old man presented with urinary retention followed by disturbance of consciousness, areflexia, ophthalmoplegia, muscle weakness, and atrophy. Epstein-Barr virus DNA by PCR was positive in his cerebrospinal fluid. The cerebrospinal fluid revealed elevated myelin basic protein and an oligoclonal band. Magnetic resonance imaging showed high signal intensity in the pons, basal ganglia, and cerebral white matter on T2-weighted imaging and fluid-attenuated inversion recovery imaging. His consciousness, ophthalmoplegia, and muscle weakness almost full recovered. In this patient, the inflammation is thought to have begun as sacral radiculitis, and then extended to encephalitis, and brachial and lumbar radiculoneuritis

    ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism.

    Get PDF
    It is unclear whether mutations in fused in sarcoma (FUS) cause familial amyotrophic lateral sclerosis via a loss-of-function effect due to titrating FUS from the nucleus or a gain-of-function effect from cytoplasmic overabundance. To investigate this question, we generated a series of independent Caenorhabditis elegans lines expressing mutant or wild-type (WT) human FUS. We show that mutant FUS, but not WT-FUS, causes cytoplasmic mislocalization associated with progressive motor dysfunction and reduced lifespan. The severity of the mutant phenotype in C. elegans was directly correlated with the severity of the illness caused by the same mutation in humans, arguing that this model closely replicates key features of the human illness. Importantly, the mutant phenotype could not be rescued by overexpression of WT-FUS, even though WT-FUS had physiological intracellular localization, and was not recruited to the cytoplasmic mutant FUS aggregates. Our data suggest that FUS mutants cause neuronal dysfunction by a dominant gain-of-function effect related either to neurotoxic aggregates of mutant FUS in the cytoplasm or to dysfunction in its RNA-binding functions

    Effects of low-intensity pulsed ultrasound on osteoclasts: Analysis with goldfish scales as a model of bone

    Get PDF
    The effects of low-intensity pulsed ultrasound (LIPUS) on osteoclastogenesis were examined using fish scales that had both osteoclasts and osteoblasts. The binding of the receptor activator of NF-κB ligand (RANKL) in osteoblasts to the receptor activator of NF-κB (RANK) in osteoclasts induced osteoclastogenesis. Therefore, we focused on RANK/RANKL signaling. After 6 h of incubation following LIPUS treatment, mRNA expression of RANKL increased significantly. Resulting from the increased RANKL mRNA level, the expression of transcription-regulating factors significantly increased after 6 h of incubation, and then the mRNA expression of functional genes was significantly up-regulated after 12 h of incubation. However, the mRNA expression of osteoprotegerin (OPG), which is known as an osteoclastogenesis inhibitory factor, also significantly increased after 6 h of incubation and tended to further increase after 12 h of incubation. At 24 h of incubation, osteoclastic functional genes’ mRNA expression decreased to the level of the control. Furthermore, we performed an in vivo experiment with goldfish. Two weeks after daily LIPUS exposure, osteoclastic marker enzymes tended to decrease while osteoblastic marker enzymes were activated. The regeneration rate of the LIPUS-treated scales was significantly higher than that of the control scales. Thus, LIPUS moderately activates osteoclasts and induces bone formation. © 2017 Biomedical Research Foundation. All rights reserved
    corecore