86 research outputs found

    The role of dynamical polarization of the ligand to metal charge transfer excitations in {\em ab initio} determination of effective exchange parameters

    Full text link
    The role of the bridging ligand on the effective Heisenberg coupling parameters is analyzed in detail. This analysis strongly suggests that the ligand-to-metal charge transfer excitations are responsible for a large part of the final value of the magnetic coupling constant. This permits to suggest a new variant of the Difference Dedicated Configuration Interaction (DDCI) method, presently one of the most accurate and reliable for the evaluation of magnetic effective interactions. This new method treats the bridging ligand orbitals mediating the interaction at the same level than the magnetic orbitals and preserves the high quality of the DDCI results while being much less computationally demanding. The numerical accuracy of the new approach is illustrated on various systems with one or two magnetic electrons per magnetic center. The fact that accurate results can be obtained using a rather reduced configuration interaction space opens the possibility to study more complex systems with many magnetic centers and/or many electrons per center.Comment: 7 pages, 4 figure

    Electron Correlation Effects in Resonant Inelastic X-ray Scattering of NaV2O5

    Full text link
    Element- and site-specific resonant inelastic x-ray scattering spectroscopy (RIXS) is employed to investigate electron correlation effects in {NaV2O5\rm NaV_2O_5}. In contrast to single photon techniques, RIXS at the vanadium L3L_3 edge is able to probe ddd-d^* transitions between V d-bands. A sharp energy loss feature is observed at -1.56 eV, which is well reproduced by a model calculation including correlation effects. The calculation identifies the loss feature as excitation between the lower and upper Hubbard bands and permits an accurate determination of the Hubbard interaction term U=3.0±0.2U= 3.0 \pm 0.2 eV.Comment: 15 pages, four figures, accepted to Phys. Rev. Let

    Functional Interaction between CFTR and the Sodium-Phosphate Co-Transport Type 2a in Xenopus laevis Oocytes

    Get PDF
    A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR). CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF) when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present study, we investigated if CFTR and the sodium-phosphate co-transporter type 2a (NPT2a) functionally interact after heterologous expression of both proteins in Xenopus laevis oocytes.NPT2a was expressed alone or in combination with CFTR in X. laevis oocytes. Using the two-electrode voltage-clamp technique, the inorganic phosphate-induced current (IPi) was measured and taken as an index of NPT2a activity. The maximal IPi for NPT2a substrates was reduced when CFTR was co-expressed with NPT2a, suggesting a decrease in its expression at the oolemna. This was consistent with Western blot analysis showing reduced NPT2a plasma membrane expression in oocytes co-expressing both proteins, whereas NPT2a protein level in total cell lysate was the same in NPT2a- and NPT2a+CFTR-oocytes. In NPT2a+CFTR- but not in NPT2a-oocytes, IPi and NPT2a surface expression were increased upon PKA stimulation, whereas stimulation of Exchange Protein directly Activated by cAMP (EPAC) had no effect. When NPT2a-oocytes were injected with NEG2, a short amino-acid sequence from the CFTR regulatory domain that regulates PKA-dependent CFTR trafficking to the plasma membrane, IPi values and NPT2a membrane expression were diminished, and could be enhanced by PKA stimulation, thereby mimicking the effects of CFTR co-expression.We conclude that when both CFTR and NPT2a are expressed in X. laevis oocytes, CFTR confers to NPT2a a cAMPi-dependent trafficking to the membrane. This functional interaction raises the hypothesis that CFTR may play a role in phosphate homeostasis

    Salsolinol Facilitates Glutamatergic Transmission to Dopamine Neurons in the Posterior Ventral Tegmental Area of Rats

    Get PDF
    Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA) partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopamine D1 receptors (D1Rs). In this study, we tested the hypothesis that salsolinol stimulates dopamine neurons involving activation of D1Rs. By using whole-cell recordings on p-VTA-dopamine neurons in acute brain slices of rats, we found that salsolinol-induced increase in spike frequency of dopamine neurons was substantially attenuated by DL-2-amino-5-phosphono-valeric acid and 6, 7-dinitroquinoxaline-2, 3-dione, the antagonists of glutamatergic N-Methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, salsolinol increased the amplitude of evoked excitatory postsynaptic currents (EPSCs) and the frequency but not the amplitude of spontaneous EPSCs. Additionally, SKF83566, a D1R antagonist attenuated the salsolinol-induced facilitation of EPSCs and of spontaneous firing of dopamine neurons. Our data reveal that salsolinol enhances glutamatergic transmission onto dopamine neurons via activation of D1Rs at the glutamatergic afferents in dopamine neurons, which contributes to salsolinol's stimulating effect on p-VTA dopamine neurons. This appears to be a novel mechanism which contributes toward rewarding properties of salsolinol

    Ab initio evaluation of local effective interactions in αNaV2O5\alpha^\prime NaV_2O_5

    Full text link
    We will present the numerical evaluation of the hopping and magnetic exchange integrals for a nearest-neighbor tJt-J model of the quarter-filled αNaV2O5\alpha^\prime NaV_2O_5 compound. The effective integrals are obtained from valence-spectroscopy {\em ab initio} calculations of embedded crystal fragments (two VO5VO_5 pyramids in the different geometries corresponding to the desired parameters). We are using a large configurations interaction (CI) method, where the CI space is specifically optimized to obtain accurate energy differences. We show that the αNaV2O5\alpha^\prime NaV_2O_5 system can be seen as a two-dimensional asymmetric triangular Heisenberg lattice where the effective sites represent delocalized VOVV-O-V rung entities supporting the magnetic electrons.Comment: 24 pages, 5 figure

    Theoretical investigation of the electronic structure of Fe(II) complexes at spin-state transitions

    Get PDF
    The electronic structure relevant to low spin (LS)high spin (HS) transitions in Fe(II) coordination compounds with a FeN6 core are studied. The selected [Fe(tz)6]2+(1) (tz=1H-tetrazole), [Fe(bipy)3]2+(2) (bipy=2,2’-bipyridine) and [Fe(terpy)2]2+ (3) (terpy=2,2’:6’,2’’-terpyridine) complexes have been actively studied experimentally, and with their respective mono-, bi-, and tridentate ligands, they constitute a comprehensive set for theoretical case studies. The methods in this work include density functional theory (DFT), time-dependent DFT (TD-DFT) and multiconfigurational second order perturbation theory (CASPT2). We determine the structural parameters as well as the energy splitting of the LS-HS states (ΔEHL) applying the above methods, and comparing their performance. We also determine the potential energy curves representing the ground and low-energy excited singlet, triplet, and quintet d6 states along the mode(s) that connect the LS and HS states. The results indicate that while DFT is well suited for the prediction of structural parameters, an accurate multiconfigurational approach is essential for the quantitative determination of ΔEHL. In addition, a good qualitative agreement is found between the TD-DFT and CASPT2 potential energy curves. Although the TD-DFT results might differ in some respect (in our case, we found a discrepancy at the triplet states), our results suggest that this approach, with due care, is very promising as an alternative for the very expensive CASPT2 method. Finally, the two dimensional (2D) potential energy surfaces above the plane spanned by the two relevant configuration coordinates in [Fe(terpy)2]2+ were computed both at the DFT and CASPT2 levels. These 2D surfaces indicate that the singlet-triplet and triplet-quintet states are separated along different coordinates, i.e. different vibration modes. Our results confirm that in contrast to the case of complexes with mono- and bidentate ligands, the singlet-quintet transitions in [Fe(terpy)2]2+ cannot be described using a single configuration coordinate
    corecore