17 research outputs found

    Carvacrol, a Food-Additive, Provides Neuroprotection on Focal Cerebral Ischemia/Reperfusion Injury in Mice

    Get PDF
    Carvacrol (CAR), a naturally occurring monoterpenic phenol and food additive, has been shown to have antimicrobials, antitumor, and antidepressant-like activities. A previous study demonstrated that CAR has the ability to protect liver against ischemia/reperfusion injury in rats. In this study, we investigated the protective effects of CAR on cerebral ischemia/reperfusion injury in a middle cerebral artery occlusion mouse model. We found that CAR (50 mg/kg) significantly reduced infarct volume and improved neurological deficits after 75 min of ischemia and 24 h of reperfusion. This neuroprotection was in a dose-dependent manner. Post-treatment with CAR still provided protection on infarct volume when it was administered intraperitoneally at 2 h after reperfusion; however, intracerebroventricular post-treatment reduced infarct volume even when the mice were treated with CAR at 6 h after reperfusion. These findings indicated that CAR has an extended therapeutic window, but delivery strategies may affect the protective effects of CAR. Further, we found that CAR significantly decreased the level of cleaved caspase-3, a marker of apoptosis, suggesting the anti-apoptotic activity of CAR. Finally, our data indicated that CAR treatment increased the level of phosphorylated Akt and the neuroprotection of CAR was reversed by a PI3K inhibitor LY-294002, demonstrating the involvement of the PI3K/Akt pathway in the anti-apoptotic mechanisms of CAR. Due to its safety and wide use in the food industry, CAR is a promising agent to be translated into clinical trials

    Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes

    Get PDF
    The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases

    Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae s.s.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbon dioxide (CO<sub>2</sub>) plays an important role in the host-seeking process of opportunistic, zoophilic and anthropophilic mosquito species and is, therefore, commonly added to mosquito sampling tools. The African malaria vector <it>Anopheles gambiae sensu stricto </it>is attracted to human volatiles augmented by CO<sub>2</sub>. This study investigated whether CO<sub>2</sub>, usually supplied from gas cylinders acquired from commercial industry, could be replaced by CO<sub>2 </sub>derived from fermenting yeast (yeast-produced CO<sub>2</sub>).</p> <p>Methods</p> <p>Trapping experiments were conducted in the laboratory, semi-field and field, with <it>An. gambiae s.s</it>. as the target species. MM-X traps were baited with volatiles produced by mixtures of yeast, sugar and water, prepared in 1.5, 5 or 25 L bottles. Catches were compared with traps baited with industrial CO<sub>2</sub>. The additional effect of human odours was also examined. In the laboratory and semi-field facility dual-choice experiments were conducted. The effect of traps baited with yeast-produced CO<sub>2 </sub>on the number of mosquitoes entering an African house was studied in the MalariaSphere. Carbon dioxide baited traps, placed outside human dwellings, were also tested in an African village setting. The laboratory and semi-field data were analysed by a χ<sup>2</sup>-test, the field data by GLM. In addition, CO<sub>2 </sub>concentrations produced by yeast-sugar solutions were measured over time.</p> <p>Results</p> <p>Traps baited with yeast-produced CO<sub>2 </sub>caught significantly more mosquitoes than unbaited traps (up to 34 h post mixing the ingredients) and also significantly more than traps baited with industrial CO<sub>2</sub>, both in the laboratory and semi-field. Adding yeast-produced CO<sub>2 </sub>to traps baited with human odour significantly increased trap catches. In the MalariaSphere, outdoor traps baited with yeast-produced or industrial CO<sub>2 </sub>+ human odour reduced house entry of mosquitoes with a human host sleeping under a bed net indoors. <it>Anopheles gambiae s.s</it>. was not caught during the field trials. However, traps baited with yeast-produced CO<sub>2 </sub>caught similar numbers of <it>Anopheles arabiensis </it>as traps baited with industrial CO<sub>2</sub>. Addition of human odour increased trap catches.</p> <p>Conclusions</p> <p>Yeast-produced CO<sub>2 </sub>can effectively replace industrial CO<sub>2 </sub>for sampling of <it>An. gambiae s.s</it>.. This will significantly reduce costs and allow sustainable mass-application of odour-baited devices for mosquito sampling in remote areas.</p

    Effects of cholinesterase inhibiting sage (salvia officinalis) on mood, anxiety and performance on a psychological stressor battery

    No full text
    Salvia officinalis (sage) has previously been shown both to possess in vitro cholinesterase inhibiting properties, and to enhance mnemonic performance and improve mood in healthy young participants. In this double-blind, placebo-controlled, crossover study, 30 healthy participants attended the laboratory on three separate days, 7 days apart, receiving a different treatment in counterbalanced order on each occasion (placebo, 300, 600 mg dried sage leaf). On each day mood was assessed predose and at 1 and 4 h postdose. Each mood assessment comprised completion of Bond–Lader mood scales and the State Trait Anxiety Inventory (STAI) before and after 20 min performance of the Defined Intensity Stress Simulator (DISS) computerized multitasking battery. In a concomitant investigation, an extract of the sage leaf exhibited dose-dependent, in vitro inhibition of acetylcholinesterase and, to a greater extent, butyrylcholinesterase. Both doses of sage led to improved ratings of mood in the absence of the stressor (that is, in pre-DISS mood scores) postdose, with the lower dose reducing anxiety and the higher dose increasing 'alertness', 'calmness' and 'contentedness' on the Bond–Lader mood scales. The reduced anxiety effect following the lower dose was, however, abolished by performing the DISS, with the same dose also being associated with a reduction of alertness during performance. Task performance on the DISS battery was improved for the higher dose at both postdose sessions, but reduced for the lower dose at the later testing session. The results confirm previous observations of the cholinesterase inhibiting properties of S. officinalis, and improved mood and cognitive performance following the administration of single doses to healthy young participants
    corecore