76 research outputs found
Understory Bird Communities in Amazonian Rainforest Fragments: Species Turnover through 25 Years Post-Isolation in Recovering Landscapes
Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragments of 1β100 ha, beginning before the fragments were isolated in the 1980s, and continuing through 2007. Using a method that accounts for imperfect detection, we estimated extinction and colonization based on standardized mist-net surveys within discreet time intervals (1β2 preisolation samples and 4β5 post-isolation samples). Between preisolation and 2007, all fragments lost species in an area-dependent fashion, with loss of as few as <10% of preisolation species from 100-ha fragments, but up to 70% in 1-ha fragments. Analysis of individual time intervals revealed that the 2007 result was not due to gradual species loss beginning at isolation; both extinction and colonization occurred in every time interval. In the last two samples, 2000 and 2007, extinction and colonization were approximately balanced. Further, 97 of 101 species netted before isolation were detected in at least one fragment in 2007. Although a small subset of species is extremely vulnerable to fragmentation, and predictably goes extinct in fragments, developing second growth in the matrix around fragments encourages recolonization in our landscapes. Species richness in these fragments now reflects local turnover, not long-term attrition of species. We expect that similar processes could be operating in other fragmented systems that show unexpectedly low extinction
Decay of interspecific avian flock networks along a disturbance gradient in Amazonia
Our understanding of how anthropogenic habitat change shapes species interactions is in its infancy. This is in large part because analytical approaches such as network theory have only recently been applied to characterize complex community dynamics. Network models are a powerful tool for quantifying how ecological interactions are affected by habitat modification because they provide metrics that quantify community structure and function. Here, we examine how large-scale habitat alteration has affected ecological interactions among mixed-species flocking birds in Amazonian rainforest. These flocks provide a model system for investigating how habitat heterogeneity influences non-trophic interactions and the subsequent social structure of forest-dependent mixed-species bird flocks. We analyse 21 flock interaction networks throughout a mosaic of primary forest, fragments of varying sizes and secondary forest (SF) at the Biological Dynamics of Forest Fragments Project in central Amazonian Brazil. Habitat type had a strong effect on network structure at the levels of both species and flock. Frequency of associations among species, as summarized by weighted degree, declined with increasing levels of forest fragmentation and SF. At the flock level, clustering coefficients and overall attendance positively correlated with mean vegetation height, indicating a strong effect of habitat structure on flock cohesion and stability. Prior research has shown that trophic interactions are often resilient to large-scale changes in habitat structure because species are ecologically redundant. By contrast, our results suggest that behavioural interactions and the structure of non-trophic networks are highly sensitive to environmental change. Thus, a more nuanced, system-by-system approach may be needed when thinking about the resiliency of ecological networks. Β© 2013 The Author(s) Published by the Royal Society. All rights reserved
Innate Sex Differences in the Timing of Spring Migration in a Songbird
In migrating animals protandry is the phenomenon whereby males of a species arrive at the breeding grounds earlier than females. In the present study we investigated the proximate causes of protandry in a migratory songbird, the northern wheatear Oenanthe oenanthe. Previous experiments with caged birds revealed that males and females show differentiated photoperiod-induced migratory habits. However, it remained open whether protandry would still occur without photoperiodic cues. In this study we kept captive first-year birds under constant photoperiod and environmental conditions in a βcommon gardenβ experiment. Male northern wheatears started their spring migratory activity earlier than females, even in the absence of environmental cues. This indicates that protandry in the northern wheatear has an endogenous basis with an innate earlier spring departure of males than females
Egg removal and intraspecific brood parasitism in the European starling ( Sturnus vulgaris )
From 1983 to 1986 we monitored 284 European starling ( Sturnus vulgaris ) nests in New Jersey for evidence of intraspecific brood parasitism and egg removal during the laying period. Egg removal occurred significantly more often at nests where intraspecific brood parasitism was detected (12 of 35 nests, 34%) than at unparasitized nests (23 of 249 nests, 9%). Brood parasitism (92% of parasitized nests) and egg removal (74% of nests with egg removal) were most common at nests where egg laying began in April of each year (i.e., early nests). Egg removal occurred at 26 (19%) and brood parasitism at 32 (23%) of 138 early nests. Both brood parasitism and egg removal were concentrated during the first four days in the laying period when brood parasitism is most likely to be successful and when host nests are most vulnerable to parasitism (Romagnano 1987). Both parasitism and removal usually involved a single egg at each nest. We detected brood parasitism and egg removal on the same day at five of 12 nests (42%) where both were observed. Because starlings do not remove foreign eggs from their nests once they begin laying (Stouffer et al. 1987) we hypothesize that parasite females sometimes removed host eggs while parasitizing nests.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46889/1/265_2004_Article_BF00295201.pd
Effects of abciximab on key pattern of human coronary restenosis in vitro: impact of the SI/MPL-ratio
BACKGROUND: The significant reduction of angiographic restenosis rates in the ISAR-SWEET study (intracoronary stenting and antithrombotic regimen: is abciximab a superior way to eliminate elevated thrombotic risk in diabetes) raises the question of whether abciximab acts on clopidogrel-independent mechanisms in suppressing neointimal hyperplasia. The current study investigates the direct effect of abciximab on ICAM-1 expression, migration and proliferation. METHODS: ICAM-1: Part I of the study investigates in cytoflow studies the effect of abciximab (0.0002, 0.002, 0.02, 0.2, 2.0, and 20.0 ΞΌg/ml) on TNF-Ξ± induced expression of intercellular adhesion molecule 1 (ICAM-1). Migration: Part II of the study explored the effect of abciximab (0.0002, 0.002, 0.02, 0.2, 2.0, and 20.0 ΞΌg/ml) on migration of HCMSMC over a period of 24 h. Proliferation: Part III of the study investigated the effect of abciximab (0.0002, 0.002, 0.02, 0.2, 2.0, and 20.0 ΞΌg/ml) on proliferation of HUVEC, HCAEC, and HCMSMC after an incubation period of 5 days. RESULTS: ICAM-1: In human venous endothelial cells (HUVEC), human coronary endothelial cells (HCAEC) and human coronary medial smooth muscle cells (HCMSMC) no inhibitory or stimulatory effect on expression of ICAM-1 was detected. Migration: After incubation of HCMSMC with abciximab in concentrations of 0.0002 β 2 ΞΌg/ml a stimulatory effect on cell migration was detected, statistical significance was achieved after incubation with 0.002 ΞΌg/ml (p < 0.05), 0.002 ΞΌg/ml (p < 0.001), and 0.2 ΞΌg/ml (p < 0.05). Proliferation: Small but statistically significant antiproliferative effects of abciximab were detected after incubation of HUVEC (0.02 and 2.0 ΞΌg/ml; p = 0.01 and p < 0.01), HCAEC (2.0 and 20.0 ΞΌg/ml; p < 0.05 and p < 0,01), and HCMSMC (2.0 and 20.0 ΞΌg/ml; p < 0.05 and p < 0.05). The significant inhibition (SI) of cell proliferation found in HCAEC and HCMSMC was achieved with drug concentrations more than 10 times beyond the maximal plasma level (MPL), resulting in a SI/MPL-ratio > 1. CONCLUSION: Thus, the anti-restenotic effects of systemically administered abciximab reported in the ISAR-SWEET-study were not caused by a direct inhibitory effect on ICAM-1 expression, migration or proliferation
Short-Term Hurricane Impacts on a Neotropical Community of Marked Birds and Implications for Early-Stage Community Resilience
Populations in fragmented ecosystems risk extirpation through natural disasters, which must be endured rather than avoided. Managing communities for resilience is thus critical, but details are sketchy about the capacity for resilience and its associated properties in vertebrate communities. We studied short-term resilience in a community of individually marked birds, following this community through the catastrophic destruction of its forest habitat by Hurricane Iris in Belize, Central America. We sampled for 58 d immediately before the storm, 28 d beginning 11 d after Hurricane Iris, and for 69 d approximately one year later. Our data showed that the initial capacity for resilience was strong. Many banded individuals remained after the storm, although lower post-hurricane recapture rates revealed increased turnover among individuals. Changes occurred in community dynamics and in abundances among species and guilds. Survivors and immigrants both were critical components of resilience, but in a heterogeneous, species-specific manner. Delayed effects, including higher fat storage and increased species losses, were evident one year later
Logging Affects Fledgling Sex Ratios and Baseline Corticosterone in a Forest Songbird
Silviculture (logging) creates a disturbance to forested environments. The degree to which forests are modified depends on the logging prescription and forest stand characteristics. In this study we compared the effects of two methods of group-selection (βmoderateβ and βheavyβ) silviculture (GSS) and undisturbed reference stands on stress and offspring sex ratios of a forest interior species, the Ovenbird (Seiurus aurocapilla), in Algonquin Provincial Park, Canada. Blood samples were taken from nestlings for corticosterone and molecular sexing. We found that logging creates a disturbance that is stressful for nestling Ovenbirds, as illustrated by elevated baseline corticosterone in cut sites. Ovenbirds nesting in undisturbed reference forest produce fewer male offspring per brood (proportion maleβ=β30%) while logging with progressively greater forest disturbance, shifted the offspring sex ratio towards males (proportion male: moderateβ=β50%, heavyβ=β70%). If Ovenbirds in undisturbed forests usually produce female-biased broods, then the production of males as a result of logging may disrupt population viability. We recommend a broad examination of nestling sex ratios in response to anthropogenic disturbance to determine the generality of our findings
Impacts of Parasites in Early Life: Contrasting Effects on Juvenile Growth for Different Family Members
Parasitism experienced early in ontogeny can have a major impact on host growth, development and future fitness, but whether siblings are affected equally by parasitism is poorly understood. In birds, hatching asynchrony induced by hormonal or behavioural mechanisms largely under parental control might predispose young to respond to infection in different ways. Here we show that parasites can have different consequences for offspring depending on their position in the family hierarchy. We experimentally treated European Shag (Phalacrocorax aristoteli) nestlings with the broad-spectrum anti-parasite drug ivermectin and compared their growth rates with nestlings from control broods. Average growth rates measured over the period of linear growth (10 days to 30 days of age) and survival did not differ for nestlings from treated and control broods. However, when considering individuals within broods, parasite treatment reversed the patterns of growth for individual family members: last-hatched nestlings grew significantly slower than their siblings in control nests but grew faster in treated nests. This was at the expense of their earlier-hatched brood-mates, who showed an overall growth rate reduction relative to last-hatched nestlings in treated nests. These results highlight the importance of exploring individual variation in the costs of infection and suggest that parasites could be a key factor modulating within-family dynamics, sibling competition and developmental trajectories from an early age
Selection of Inhibitor-Resistant Viral Potassium Channels Identifies a Selectivity Filter Site that Affects Barium and Amantadine Block
BACKGROUND:Understanding the interactions between ion channels and blockers remains an important goal that has implications for delineating the basic mechanisms of ion channel function and for the discovery and development of ion channel directed drugs. METHODOLOGY/PRINCIPAL FINDINGS:We used genetic selection methods to probe the interaction of two ion channel blockers, barium and amantadine, with the miniature viral potassium channel Kcv. Selection for Kcv mutants that were resistant to either blocker identified a mutant bearing multiple changes that was resistant to both. Implementation of a PCR shuffling and backcrossing procedure uncovered that the blocker resistance could be attributed to a single change, T63S, at a position that is likely to form the binding site for the inner ion in the selectivity filter (site 4). A combination of electrophysiological and biochemical assays revealed a distinct difference in the ability of the mutant channel to interact with the blockers. Studies of the analogous mutation in the mammalian inward rectifier Kir2.1 show that the T-->S mutation affects barium block as well as the stability of the conductive state. Comparison of the effects of similar barium resistant mutations in Kcv and Kir2.1 shows that neighboring amino acids in the Kcv selectivity filter affect blocker binding. CONCLUSIONS/SIGNIFICANCE:The data support the idea that permeant ions have an integral role in stabilizing potassium channel structure, suggest that both barium and amantadine act at a similar site, and demonstrate how genetic selections can be used to map blocker binding sites and reveal mechanistic features
Persistence Increases with Diversity and Connectance in Trophic Metacommunities
We are interested in understanding if metacommunity dynamics contribute to the persistence of complex spatial food webs subject to colonization-extinction dynamics. We study persistence as a measure of stability of communities within discrete patches, and ask how do species diversity, connectance, and topology influence it in spatially structured food webs.We answer this question first by identifying two general mechanisms linking topology of simple food web modules and persistence at the regional scale. We then assess the robustness of these mechanisms to more complex food webs with simulations based on randomly created and empirical webs found in the literature. We find that linkage proximity to primary producers and food web diversity generate a positive relationship between complexity and persistence in spatial food webs. The comparison between empirical and randomly created food webs reveal that the most important element for food web persistence under spatial colonization-extinction dynamics is the degree distribution: the number of prey species per consumer is more important than their identity.With a simple set of rules governing patch colonization and extinction, we have predicted that diversity and connectance promote persistence at the regional scale. The strength of our approach is that it reconciles the effect of complexity on stability at the local and the regional scale. Even if complex food webs are locally prone to extinction, we have shown their complexity could also promote their persistence through regional dynamics. The framework we presented here offers a novel and simple approach to understand the complexity of spatial food webs
- β¦