1,911 research outputs found

    Conclusions and Recommendations

    Get PDF
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 7 (2005): Conclusions and Recommendations by E. Gasparett

    HST/NICMOS Paschen-alpha Survey of the Galactic Center: Overview

    Get PDF
    We have recently carried out the first wide-field hydrogen Paschen-alpha line imaging survey of the Galactic Center (GC), using the NICMOS instrument aboard the Hubble Space Telescope. The survey maps out a region of 2253 pc^2 around the central supermassive black hole (Sgr A*) in the 1.87 and 1.90 Micron narrow bands with a spatial resolution of 0.01 pc at a distance of 8 kpc. Here we present an overview of the observations, data reduction, preliminary results, and potential scientific implications, as well as a description of the rationale and design of the survey. We have produced mosaic maps of the Paschen-alpha line and continuum emission, giving an unprecedentedly high resolution and high sensitivity panoramic view of stars and photo-ionized gas in the nuclear environment of the Galaxy. We detect a significant number of previously undetected stars with Paschen-alpha in emission. They are most likely massive stars with strong winds, as confirmed by our initial follow-up spectroscopic observations. About half of the newly detected massive stars are found outside the known clusters (Arches, Quintuplet, and Central). Many previously known diffuse thermal features are now resolved into arrays of intriguingly fine linear filaments indicating a profound role of magnetic fields in sculpting the gas. The bright spiral-like Paschen-alpha emission around Sgr A* is seen to be well confined within the known dusty torus. In the directions roughly perpendicular to it, we further detect faint, diffuse Paschen-alpha emission features, which, like earlier radio images, suggest an outflow from the structure. In addition, we detect various compact Paschen-alpha nebulae, probably tracing the accretion and/or ejection of stars at various evolutionary stages.Comment: accepted for publication in MNRAS; a version of higher resolution images may be found at http://www.astro.umass.edu/~wqd/papers/hst/paper1.pd

    K-shell x-ray spectroscopy of atomic nitrogen

    Full text link
    Absolute {\it K}-shell photoionization cross sections for atomic nitrogen have been obtained from both experiment and state-of-the-art theoretical techniques. Due to the difficulty of creating a target of neutral atomic nitrogen, no high-resolution {\it K}-edge spectroscopy measurements have been reported for this important atom. Interplay between theory and experiment enabled identification and characterization of the strong 1s1s →\rightarrow npnp resonance features throughout the threshold region. An experimental value of 409.64 ±\pm 0.02 eV was determined for the {\it K}-shell binding energy.Comment: 4 pages, 2 graphs, 1 tabl

    Experimental and theoretical study of filtered optical feedback in a semiconductor laser

    Get PDF
    We report on the systematical investigation of the steady-state regime and the dynamical behavior of a semiconductor laser subject to delayed filtered optical feedback. We study a Fabry-Perot (FP) interferometer type of filter placed in the external feedback loop of a diode laser. The effects of the filter on the locking of the diode laser frequency to the external cavity modes are described. We report and observe hysteresis, bistability, and multistability and show that all these are well described by a set of rate equations for the coupled laser and FP cavity system. We also present an experimental stability diagram that summarizes the dynamical behavior of the syste

    Self-bias modulates saccadic control.

    Get PDF
    We present novel data on the role of attention in eliciting enhanced processing of stimuli associated with self. Participants were required to make pro- or anti-saccades according to whether learned shape-label pairings matched or mismatched. When stimuli matched participants were required to make an anti-saccade, and when the stimuli mismatched a pro-saccade was required. We found that anti-saccades were difficult to make to stimuli associated with self when compared to stimuli associated with a friend and a stranger. In contrast, anti-saccades to friend-stimuli were easier to make than anti-saccades to stranger-stimuli. In addition, a correct anti-saccade to a self-associated stimulus disrupted subsequent pro-saccade trials, relative to when the preceding anti-saccade was made to other stimuli. The data indicate that self-associated stimuli provide a strong cue for explicit shifts of attention to them, and that correct anti-saccades to such stimuli demand high levels of inhibition (which carries over to subsequent pro-saccade trials). The self exerts an automatic draw on attention

    Partial Ion Yield Sspectroscopy around the Cl 2p and C 1s Ionization Thresholds in CF3Cl

    Full text link
    We present a partial ion yield experiment on freon 13, CF3Cl, excited in the vicinity of the C 1s and Cl 2p ionization thresholds. We have collected a large amount of cationic fragments and a few anionic fragments at both edges. We have observed a strong intensity dependence of Rydberg transitions with ion fragment size for the CFnCl+ and CFn+/F+ (n=0–3) series at both the Cl 2p and C 1s ionization edges. Selectivity in the fragmentation processes involving the C–Cl and C–F bonds are highlighted by the intensities of the C 1s to lowest unoccupied molecular orbital (LUMO) and LUMO+1 transitions measured on the CFnCl+ and CFn+ yields. Equally, by comparison with their cation counterpart, we discuss possible bond-length dependence for the anion formation at the carbon 1s edge

    Multiple episodes of star formation in the CN15/16/17 molecular complex

    Full text link
    We have started a campaign to identify massive star clusters inside bright molecular bubbles towards the Galactic Center. The CN15/16/17 molecular complex is the first example of our study. The region is characterized by the presence of two young clusters, DB10 and DB11, visible in the NIR, an ultra-compact HII region identified in the radio, several young stellar objects visible in the MIR, a bright diffuse nebulosity at 8\mu m coming from PAHs and sub-mm continuum emission revealing the presence of cold dust. Given its position on the sky (l=0.58, b=-0.85) and its kinematic distance of ~7.5 kpc, the region was thought to be a very massive site of star formation in proximity of the CMZ. The cluster DB11 was estimated to be as massive as 10^4 M_sun. However the region's properties were known only through photometry and its kinematic distance was very uncertain given its location at the tangential point. We aimed at better characterizing the region and assess whether it could be a site of massive star formation located close to the Galactic Center. We have obtained NTT/SofI JHKs photometry and long slit K band spectroscopy of the brightest members. We have additionally collected data in the radio, sub-mm and mid infrared, resulting in a quite different picture of the region. We have confirmed the presence of massive early B type stars and have derived a spectro-photometric distance of ~1.2 kpc, much smaller than the kinematic distance. Adopting this distance we obtain clusters masses of M(DB10) ~ 170 M_sun and M(DB11) ~ 275 M_sun. This is consistent with the absence of any O star, confirmed by the excitation/ionization status of the nebula. No HeI diffuse emission is detected in our spectroscopic observations at 2.113\mu m, which would be expected if the region was hosting more massive stars. Radio continuum measurements are also consistent with the region hosting at most early B stars.Comment: Accepted for publication in Astronomy and Astrophysics. Fig. 1 and 3 presented in reduced resolutio

    Deep near-infrared imaging of W3 Main: constraints on stellar cluster formation

    Full text link
    Embedded clusters like W3 Main are complex and dynamically evolving systems that represent an important phase of the star formation process. We aim at the characterization of the entire stellar content of W3 Main in a statistical sense to identify possible differences in evolutionary phase of the stellar populations and find clues about the formation mechanism of this massive embedded cluster. Methods. Deep JHKs imaging is used to derive the disk fraction, Ks-band luminosity functions and mass functions for several subregions in W3 Main. A two dimensional completeness analysis using artificial star experiments is applied as a crucial ingredient to assess realistic completeness limits for our photometry. We find an overall disk fraction of 7.7 ±\pm 2.3%, radially varying from 9.4 ±\pm 3.0 % in the central 1 pc to 5.6 ±\pm 2.2 % in the outer parts of W3 Main. The mass functions derived for three subregions are consistent with a Kroupa and Chabrier mass function. The mass function of IRSN3 is complete down to 0.14 Msun and shows a break at M ∼\sim 0.5 Msun. We interpret the higher disk fraction in the center as evidence for a younger age of the cluster center. We find that the evolutionary sequence observed in the low-mass stellar population is consistent with the observed age spread among the massive stars. An analysis of the mass function variations does not show evidence for mass segregation. W3 Main is currently still actively forming stars, showing that the ionizing feedback of OB stars is confined to small areas (∼\sim 0.5 pc). The FUV feedback might be influencing large regions of the cluster as suggested by the low overall disk fraction.Comment: 15 pages, 13 figures, accepted by A&

    Age spread in Galactic star forming region W3 Main

    Full text link
    We present near-infrared JHKs imaging as well as K-band multi-object spectroscopy of the massive stellar content of W3 Main using LUCI at the LBT. We confirm 13 OB stars by their absorption line spectra in W3 Main and spectral types between O5V and B4V have been found. Three massive Young Stellar Objects are identified by their emission line spectra and near-infrared excess. From our spectrophotometric analysis of the massive stars and the nature of their surrounding HII regions we derive the evolutionary sequence of W3 Main and we find an age spread of 2-3 Myr.Comment: 4 pages, 2 figures, To appear in conference proceedings of "370 years of Astronomy in Utrecht
    • …
    corecore