2,857 research outputs found
Automatic, computerized testing of bolts
System for testing bolts with various platings, lubricants, nuts, and tightening procedures tests 200 fasteners, and processes and summarizes the results, within one month. System measures input torque, nut rotation, bolt clamping force, bolt shank twist, and bolt elongation, data is printed in report form. Test apparatus is described
The application of cast SiC/Al to rotary engine components
A silicon carbide reinforced aluminum (SiC/Al) material fabricated by Dural Aluminum Composites Corporation was tested for various components of rotary engines. Properties investigated included hardness, high temperature strength, wear resistance, fatigue resistance, thermal conductivity, and expansion. SiC/Al appears to be a viable candidate for cast rotors, and may be applicable to other components, primarily housings
Henri Temianka Correspondence; (stoller)
https://digitalcommons.chapman.edu/temianka_correspondence/2942/thumbnail.jp
Henri Temianka Correspondence; (stoller)
https://digitalcommons.chapman.edu/temianka_correspondence/2941/thumbnail.jp
About the limits of microfiltration for the purification of wastewaters
In the past, microfiltration was widely used as a
pretreatment step for wastewater stream purification
purposes. Experiences performed during the last years
shows that microfiltration fails to maintain its
performances for longer period of times. Many case studies
demonstrate that the adoption of microfiltration leads to
the failure of the overall process; the severe fouling of the
microfiltration membranes leads to high operating costs
with the consequence to make the treatment of the
wastewater economically unfeasible. The boundary flux
concept is a profitable tool to analyze fouling issues in
membrane processes. The boundary flux value separates an
operating region characterized by reversible fouling
formation from irreversible one. Boundary flux values are
not content, but function of time, as calculated by the subboundary
fouling rate value. The knowledge of both
parameters may fully describe the membrane performances
in sub-boundary operating regimes. Many times, for
wastewater purification purposes, ultrafiltration
membranes appear to be suits better to the needs, even they
exhibit lower permeate fluxes compared to microfiltration.
Key to this choice is that ultrafiltration appears to resist
better to fouling issues, with a limited reduction of the
performances as a function of time. In other words, it
appears that ultrafiltration exhibit higher boundary flux
values and lower sub-boundary fouling rates. In this work,
after a brief introduction to the boundary flux concept, for
many different wastewater streams (more than 20,
produced by the most relevant industries in food,
agriculture, manufacture, pharmaceutics), the boundary
flux and sub-boundary fouling rate values of different
microfiltration and ultrafiltration membranes will be
discussed and compared. The possibility to successfully
use microfiltration as a pretreatment step strongly depends
on the feedstock characteristics and, in detail, on the
particle size of the suspended matter. In most cases,
microfiltration demonstrates to be technically unsuitable
for pretreatment purposes of many wastewater streams; as
a consequence, the adoption of microfiltration pushes
operators to exceed boundary flux conditions, therefore
triggering severe fouling, that leads to economic
unfeasibility of the process in long terms
Chromium recovery by membranes for process reuse in the tannery industry
Leather tanning is a wide common industry all over the
world. In leather processing, water is one of the most
important medium, almost 40-45 L water kg-1 raw-hide or
skin is used by tanneries for processing finished leathers.
The composition of tannery wastewater presents
considerable dissimilarities in the concentration range of
pollutants both of inorganic (chlorides, with concentration
ranging from several hundred to over 10,000 mg L-1 Cl–;
sulphate (VI), ammonium ions and sulphide ions,
exhibiting concentration that ranges from tens to several
hundred mg L-1) and organic (the COD value is usually
several thousand mg L-1 O2). Throughout the years, many
conventional processes have been carried out to treat
wastewater from tannery industry: unfortunately, in this
case, biological treatment methods give rise to an
excessive production of sludge, whereas physical and
chemical methods are too expensive in terms of energy and
reagent costs. In this work, a membrane process based on
NF membrane modules was adopted to treat the tannery
feedstock after primary conventional treatment. In a first
step, the determination of all boundary flux parameters, in
order to inhibit severe fouling formation during operation,
were performed. After this, experimental work was carried
out to validate the approach. The target of water
purification was reached, that is the legal discharge to
municipal sewer system in Italy of 90% of the initial
wastewater stream volume. This allows having an
immediate cost saving of 21%. Moreover, the developed
process leads to a second benefit, that is the production of
5% of the initial volume as a highly chromium-rich
concentrate at no cost suitable to tannery process recycle
and reuse. In this case, cost saving rates exceeds 40%. At
the end, scale-up of the investigated process will be
discussed from technical and economic point of view
Recommended from our members
The future of clinical leadership: evidence for physician leadership and the educational pathway for new leaders
Until recently, the title ‘physician leader’ was rarely heard particularly in the UK. But that is changing. Doctors are being drawn into leadership and management more systematically. New educational opportunities are being tailored to the specific needs of doctors. The change towards physician leadership is being driven by research showing that leaders who are experts in the core business, such as doctors, are associated with improved organisational performance. This article summarises that evidence and then reviews what we have learnt about how best to train future physician leaders
Modeling of Microstructure Evolution in Austenitic Stainless Steels Irradiated Under Light Water Reactor Conditions
A model for the development of microstructure during irradiation in fast reactors has been adapted for light water reactor (LWR) irradiation conditions (275 {approximately} 325 C, up to {approximately}10 dpa). The original model was based on the rate-theory, and included descriptions of the evolution of both dislocation loops and cavities. The model was modified by introducing in-cascade interstitial clustering, a term to account for the dose dependence of this clustering, and mobility of interstitial clusters. The purpose of this work was to understand microstructural development under LWR irradiation with a focus on loop nucleation and saturation of loop density. It was demonstrated that in-cascade interstitial clustering dominates loop nucleation in neutron irradiation in LWRS. Furthermore it was shown that the dose dependence of in-cascade interstitial clustering is needed to account for saturation behavior as commonly observed. Both quasi-steady-state (QSS) and non-steady-state (NSS) solutions to the rate equations were obtained. The difference between QSS and NSS treatments in the calculation of defect concentration is reduced at LWR temperature when in-cascade interstitial clustering dominates loop nucleation. The mobility of interstitial clusters was also investigated and its impact on loop density is to reduce the nucleation term. The ultimate goal of this study is to combine the evolution of microstructure and microchemistry together to account for the radiation damage in austenitic stainless steels
In vitro ion chelating, antioxidative mechanism of extracts from fruits and barks of tetrapleura tetraptera and their protective effects against fenton mediated toxicity of metal ions on liver homogenates
The aim of the present study was to investigate the antioxidant activity and protective potential of T. tetraptera extracts against ion toxicity. The antioxidant activity of the extracts was investigated spectrophotometrically against several radicals (1,1-diphenyl-2-picrylhydrazyl (DPPH•), 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS•), hydroxyl radical (HO•), and nitric oxide (NO•)), followed by the ferric reducing power, total phenols, flavonoid, and flavonol contents. The effects of the extracts on catalase (CAT), superoxide dismutase (SOD), and peroxidase activities were also determined using the standard methods as well as the polyphenol profile using HPLC. The results showed that the hydroethanolic extract of T. tetraptera (CFH) has the lowest ICvalue with the DPPH, ABTS, OH, and NO radicals. The same extract also exhibited the significantly higher level of total phenols (37.24 ± 2.00 CAE/g dried extract); flavonoids (11.36 ± 1.88 QE/g dried extract); and flavonols contents (3.95 ± 0.39 QE/g dried extract). The HPLC profile of T. tetraptera revealed that eugenol (958.81 ± 00 mg/g DW), quercetin (353.78 ± 00 mg/g DW), and rutin (210.54 ± 00 mg/g DW) were higher in the fruit than the bark extracts. In conclusion, extracts from T. tetraptera may act as a protector against oxidative mediated ion toxicity. © 2015 Bruno Moukette Moukette et al
A Remote Indicating Hinge-Moment Balance, Special Report
This report describes an electrical hinge-moment balance for use with wind-tunnel models of aircraft. A brief description of the principle of operation and operating experience with the balance is given in part I. Part II gives constructional details and part III gives theoretical considerations. Extensive constructional information is given to enable the reproduction of the equipment
- …