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Abstract  

Leather tanning is a wide common industry all over the 

world. In leather processing, water is one of the most 

important medium, almost 40-45 L water kg-1 raw-hide or 

skin is used by tanneries for processing finished leathers. 

The composition of tannery wastewater presents 

considerable dissimilarities in the concentration range of 

pollutants both of inorganic (chlorides, with concentration 

ranging from several hundred to over 10,000 mg L-1 Cl–; 

sulphate (VI), ammonium ions and sulphide ions, 

exhibiting concentration that ranges from tens to several 

hundred mg L-1) and organic (the COD value is usually 

several thousand mg L-1 O2). Throughout the years, many 

conventional processes have been carried out to treat 

wastewater from tannery industry: unfortunately, in this 

case, biological treatment methods give rise to an 

excessive production of sludge, whereas physical and 

chemical methods are too expensive in terms of energy and 

reagent costs. In this work, a membrane process based on 

NF membrane modules was adopted to treat the tannery 

feedstock after primary conventional treatment. In a first 

step, the determination of all boundary flux parameters, in 

order to inhibit severe fouling formation during operation, 

were performed. After this, experimental work was carried 

out to validate the approach. The target of water 

purification was reached, that is the legal discharge to 

municipal sewer system in Italy of 90% of the initial 

wastewater stream volume. This allows having an 

immediate cost saving of 21%. Moreover, the developed 

process leads to a second benefit, that is the production of 

5% of the initial volume as a highly chromium-rich 

concentrate at no cost suitable to tannery process recycle 

and reuse. In this case, cost saving rates exceeds 40%. At 

the end, scale-up of the investigated process will be 

discussed from technical and economic point of view. 

Keywords: chromium, tannery wastewater, reuse, 

recovery 

1. Introduction 

Throughout the years, many conventional processes have 

been carried out to treat wastewater streams such as 

biological process, oxidation process and chemical 

process. Among these, physical and chemical methods are 

considered very expensive in terms of energy and reagents 

consumption (Bavasso, 2016; Di Palma, 2014, Di Palma, 

2015; Gueye, 2016; Iaquinta, 2009; Ruzmanova, 2013). 

Moreover, biological treatment may lead to the generation 

of excessive sludges (Le Clech, 2006). Unfortunately, in 

the case of tannery wastewater streams, all previous 

statements apply, making chemical, physical or biological 

treatment methods too expensive in terms of energy and 

reagent costs. Therefore, the treatment of this wastewater 

needs technical reorganization, by combining and 

integrating alternative systems to the conventional ones. In 

particular, the use of membrane technologies applied to the 

leather industry represents an economic advantage, 

especially in the recovery of chromium from residual 

waters of leather tanning. Several studies showed that 

crossflow microfiltration (MF), ultrafiltration (UF), 

nanofiltration (NF), reverse osmosis (RO) and supported 

liquid membranes (SLMs) can be applied successfully on 

wastewater treatment processes (Stoller, 2010, 2012; 

Ochando Pulido, 2014). In particular, in the leather 

industry, a recovery of chromium from spent liquors, the 

reuse of wastewater and chemicals of the deliming/bating 

liquor, the reduction of the polluting load of unhairing and 

degreasing, the removal of salts, can put condition for their 

discharge and reuse. Reverse osmosis RO with a plate-and-

frame membrane has been used as post treatment to 

remove refractory organic compounds (chloride and 

sulphate). The high quality of the permeate stream 

produced by the RO system with a plane membrane 

allowed the reuse of the tannery effluent within the 

production cycle, thus reducing groundwater consumption. 

In particular, in the membrane process described by the 

Authors, the tannery feedstock after primary conventional 

treatment was driven to an NF membrane.  

2. Experimental setup 

The pilot plant used is shown schematically in Figure 1. 

The plant consists of a 100 liter feed tank, FT1, in which 

the pretreated feedstock is carried. The centrifugal booster 

pump, P1, and the volumetric pump, P2, drive the 

wastewater stream over the used spiral wounded 
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nanofiltration (NF model DK supplied by Osmonics) or 

reverse osmosis (RO model SC supplied by Osmonics) 

membrane, fitted in the housing, M1, at an average flow 

rate equal to 600 L h−1. The active membrane area of both 

the modules are equal to 0.51 m2. The maximum allowable 

operating pressure is equal to 32 bar and 64 bar for NF and 

RO, respectively. Acting on the regulation valves, V1 and 

V2, it is possible to set the desired operating pressure over 

the membrane with a precision of 0.5 bar, maintaining the 

feed flow rate constant. Permeate and concentrate streams 

are cooled down to the fixed feedstock temperature, mixed 

together and recycled back to the feedstock. In this way, 

the feedstock composition is kept constant during each 

experimental batch run. The temperature was controlled 

for all experiments at the value of 20 ± 1 °C. After each 

experiment, the membrane was rinsed with tap water for at 

least 30 min. 

 

 
Figure 1. Scheme of the experimental setup 

3. Results and Discussion 

The first objective of this work was to identify optimal 

operating conditions for the two different membrane 

modules. The boundary flux (Stoller, 2014, 2016) was 

measured for the NF membrane only, since RO did not 

show significant fouling issues in the adopted pressure 

range. The measurements were performed by applying the 

pressure cycle step method and successive evaluation 

method, described in detail elsewhere, starting from a 

value of 2 bar (Stoller, 2015). Concerning the boundary 

flux, Jb, the following fitting equations apply (Stoller, 

2014): 

−dm/dt = α; Jp(t) ≤ Jb   (1) 

−dm/dt = α + b[Jp(t) − Jb]; Jp(t) > Jb  (2) 

where m is the permeability of the membrane and b is a 

fitting parameter. Below boundary flux, no fouling is 

observed; therefore, a constant contribution to the fouling 

phenomena is absent (α = 0). This is not the case below the 

threshold flux value, where fouling is immediately 

observed (α ≠ 0). Above boundary flux values, the fouling 

behavior sensibly increases, and fouling quickly starts to 

occur (α ≠ 0). Of interest is Eq.(1), since operation should 

occur with no or a small amount of fouling. Eq.(1) can be 

discretized between t1 and t2, equal to one pressure 

cycling period, Δt, and the following linear equation, 

hereafter marked by an asterisk, can be derived: 

(−Δm/Δt)* = α; Jp(t) ≤ Jth   (3) 

As long as the adopted trans-membrane pressure (TMP) 

values remain below the threshold one, no effect on the 

changes of the permeability loss rate should be observed, 

thus resulting in a constant (−Δm/Δt)* value. This value is 

the expected permeate reduction if Equation (3) holds, that 

is, at sub-boundary flux regimes, and must be compared to 

the measured one, hereafter reported as (−Δm/Δt)°. The 

application of Equation (3) implies the knowledge of the 

“α” parameter value: in this work, this value was 

calculated at the lowest available TMP value, where 

chances to work at sub-boundary operating conditions are 

highest. Finally, by the application of the pressure cycling 

method, following conditions on the measured (−Δm/Δt)° 

values are met: 

 (−Δm/Δt)° > (−Δm/Δt)*    (4) 

The obtained results from the analysis were reported in 

Table 1. From the obtained results, the determination of the 

“α” parameter in Equation (1) at 2 bar was successful, 

since the permeability decline stays within the measured 

limits, even at higher TMP values, thus confirming that the 

reference was taken at sub-threshold flux operating 

conditions. A boundary flux point exists of 6 bar, where 

(−Δm/Δt)° is starting to become higher than (−Δm/Δt)*, 

equal to 4.4 L h
−1

 m
−2

 and characterized by definition by a 

permeability loss of 14.124 × 10
−5

 L h
−2

 m
−2

 bar. The 

permeate of NF has a final COD value of 102 mg L
−1

, 

corresponding to an overall rejection value of 95 %. The 

permeate characteristics are reported in Table 4. case of 

others, in particular, chromium and, possibly, other heavy 

metals. Therefore, RO must be applied to reach the targets 

of all parameters. The osmotic pressure of RO was equal to 

9.71 bar and permeability equal to 0.364 L m
−2

 h
−1

 bar
−1

. 

The operating pressure relies only on economics. Since a 

capacity constraint exists on NF, given by the threshold 

flux, this latter aspect was taken into account, and as a 

consequence, a pressure of 22 bar is suggested for RO. In 

Figure 2, the obtained permeate flux profiles, with a target 

of 95% of recovery, were plotted at 6 bar and 22 bar for 

NF and RO, respectively. The characteristics of the 

obtained membrane permeate streams are reported in Table 

2.  

 

 

Figure 2. Plot of the NF and RO permeate flux as a 

function of operating time 

It is possible to notice that, besides fouling, an additional 

sensible permeate flux reduction exists, due to the 
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operation in batch mode at a constant TMP value: the 

separation of the permeate stream leads to a solute 

concentration of the feedstock, and as a consequence, the 

membrane permeability decreases (Stoller, 2011; Ochando 

Pulido, 2016). The experimental work showed the 

feasibility of performing the secondary treatment of the 

tannery wastewater effluents by membrane technology. 

The proposed membrane plant is therefore composed of 

NF and RO membrane processes in series. The operating 

parameters are reported in Table 3. In order to check the 

economic feasibility of the membrane process, a cost 

estimation of the proposed treatment was carried out, and 

the results were compared to the cost required by an 

external wastewater treatment service, relying on 

conventional biological processes.  

4. Conclusions 

The feedstocks’ characteristics and membrane properties, 

as well as the operating conditions adopted, are hereafter 

reported in Table 3. The boundary flux Jb was found to be 

4.4 L h
-2

 m
-2

. Moreover, the sub-boundary fouling 

parameter α was estimated to be equal to 0.00014 L h
-2

 m
-2

 

bar
-1

. In these conditions, the application of membrane 

technology appears to be advantageous for the tannery 

manufacturer, even if the economic benefit of chromium 

recovery is not taken into account: the treatment and 

discharge of the wastewater stream is solved, with a 

minimum total cost savings of about 21 %, if compared to 

the fixed fees of the external biological treatment plant. 

The treatment process by membranes limits the disposal of 

concentrates to external services to 5 %, permitting the 

discharge of 90 % of the initial wastewater volume in 

surface waters and reusing 5 % as chromium-rich 

concentrate at no cost. 

 

 

 

 

Table 1. Boundary flux determination (in bold) for NF 

TMP 

[bar] 

∆t 

[h] 

(−Δm/Δt)° 

[10
−5

 L h
−2

 m
−2

 bar] 

(−Δm/Δt)* 

[10
−5

 L h
−2

 m
−2

 bar] 

2 1 14,124 14,124 

3 2 5,817 14,124 

4 3 6,394 14,124 

5 4 12,191 14,124 

6 5 16,130 14,124 

7 6 16,847 14,124 

 

 

 

Table 2. Characteristics of the permeate stream 

 
COD 

[mg L
-1

] 

TTS 

[mg L
-1

] 

NH4 

[mg L
-1

] 

P 

[mg L
-1

] 

S 

[mg L
-1

] 

Cr 

[mg L
-1

] 

Feed 

(raw WW) 
2200 266 69 2,5 0,09 195 

Discharge 

limits 
160 80 15 10 1 2 

NF 

Permeate 
102 0 5,89 <2,5 0,09 7,92 

RO 

Permeate 
86 0 - - - 0,04 
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Table 3. Operating conditions of the proposed membrane plant; capacity equal to 646 m
3
 h

-1 

Feedstock 

Key parameter COD COD 

Value in feed stream 2.0 g L
-1

 0.1 g L
-1

 

Pretreatments Primary treatment  Primary treatment + NF 

Membrane  

properties 

Membrane type NF RO 

Membrane model SW SW 

Membrane ID DK SC 

Membrane supplier Osmonics Osmonics 

Pore size 0.5 nm - 

mw [L h
-1

 m
-2

 bar
-1

] 2.500 0.364 

Process 

properties 

T [°C] 20 20 

vF [L h
-1

] 600 600 

π [bar] 0.0 9.7 

Operation time [h] 4 4 

Operation cycles [-] 450 450 

R [%] 95.0 95.0 

Boundary  

flux data 

Boundary flux type threshold threshold 

α [L h
-2

 m
-2

 bar
-1

] 0.00014 0.00000 

Δw% [%] 0.001 0.001 

Jb [L h
-1

 m
-2

] 4.4 4.4 

TMPb [bar] 6.0 22.0 

Results 

Membrane area [m
2
] 257280 

Investment costs [€ m
-3

] 1.44 

Operating costs [€ m
-3

] 0.36 

Total costs [€ m
-3

] 1.80 

Note 
Cr is recovered back in the concentrate and might be 

used again in the tannery process. 
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