89 research outputs found
HITRAP: A facility at GSI for highly charged ions
An overview and status report of the new trapping facility for highly charged
ions at the Gesellschaft fuer Schwerionenforschung is presented. The
construction of this facility started in 2005 and is expected to be completed
in 2008. Once operational, highly charged ions will be loaded from the
experimental storage ring ESR into the HITRAP facility, where they are
decelerated and cooled. The kinetic energy of the initially fast ions is
reduced by more than fourteen orders of magnitude and their thermal energy is
cooled to cryogenic temperatures. The cold ions are then delivered to a broad
range of atomic physics experiments.Comment: 8 pages, 11 figure
Observation of strong two-electron-one-photon transitions in few-electron ions
We resonantly excite the K series of O5+ and O6+ up to principal quantum number n = 11 with monochromatic x rays, producing K-shell holes, and observe their relaxation by soft-x-ray emission. Some photoabsorption resonances of O5+ reveal strong two-electron-one-photon (TEOP) transitions. We find that for the [(1s2s)(1)5p(3)(/2)](3/2;1/2) states, TEOP relaxation is by far stronger than the radiative decay and competes with the usually much faster Auger decay path. This enhanced TEOP decay arises from a strong correlation with the near-degenerate upper states [(1s2p(3)(/2))(1)4s](3/2;1/2) of a Li-like satellite blend of the He-like K alpha transition. Even in three-electron systems, TEOP transitions can play a dominant role, and the present results should guide further research on the ubiquitous and abundant many-electron ions where electronic energy degeneracies are far more common and configuration mixing is stronger
Gamma Factory at CERN – novel research tools made of light
We discuss the possibility of creating novel research tools by producing and
storing highly relativistic beams of highly ionised atoms in the CERN
accelerator complex, and by exciting their atomic degrees of freedom with
lasers to produce high-energy photon beams. Intensity of such photon beams
would be by several orders of magnitude higher than offered by the presently
operating light sources, in the particularly interesting gamma-ray energy
domain of 0.1-400 MeV. In this energy range, the high-intensity photon beams
can be used to produce secondary beams of polarised electrons, polarised
positrons, polarised muons, neutrinos, neutrons and radioactive ions. New
research opportunities in a wide domain of fundamental and applied physics can
be opened by the Gamma Factory scientific programme based on the above primary
and secondary beams.Comment: 12 pages; presented by W. Placzek at the XXV Cracow Epiphany
Conference on Advances in Heavy Ion Physics, 8-11 January 2019, Cracow,
Polan
Electron-electron interaction in strong electromagnetic fields: The two-electron contribution to the ground-state energy in He-like uranium
Radiative recombination transitions into the ground state of cooled bare and hydrogen-like uranium ions were measured at the storage ring ESR. By comparing the corresponding x-ray centroid energies, this technique allows for a direct measurement of the electron-electron contribution to the ionization potential in the heaviest he-like ions. For the two-electron contribution to the ionization potential of he-like uranium we obtain a value of 2248 #+-# 9 eV. This represents the most accurate determination of two-electron effects in the domain of high-Z he-like ions and the accuracy reaches already the size of the specific two-electron radiative QED corrections. (orig.)Available from TIB Hannover: RA 3692(04-11) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
Reduction of uncertainties in exposure assessment based on environmental monitoring data.
Emergency preparedness and response systems for nuclear and radiological emergencies have to deal with decision-making in situations with relevant uncertainties. Consistent and appropriate protective measures must be decided before, during and after emergency situations. CONFIDENCE WP2 research helps to improve this decision-making process in the urgent response and the early response phase of emergency situations with potential major releases to atmosphere. This paper describes methods to reduce uncertainties in dose assessment for the population using data from stationary and mobile environmental monitoring programs. A special focus is given to identification of the measurement uncertainties of stationary and mobile monitoring systems. Methods to reduce these uncertainties and procedures to optimise mobile monitoring strategies are discussed. A first contribution towards assessing the quality of dose-rate measurements performed by the general population is made. In addition, the paper introduces approaches for advanced dose assessment tools using monitoring data and concepts for identifying critically exposed groups
Recommended from our members
X-ray Emission from Electron Betatron Motion in a Laser-Plasma Accelerator
Single-shot x-ray spectra from electron bunches produced by a laser-plasma wakefield accelerator (LPA) were measured using a photon-counting single-shot pixelated Silicon-based detector [3], providing for the first time direct spectra without assumptions required by filter based techniques. In addition, the electron bunch source size was measured by imaging a wire target, demonstrating few micron source size and stability. X-rays are generated when trapped electrons oscillate in the focusing field of the wake trailing the driver laser pulse. In addition to improving understanding of bunch emittance and wake structure, this provides a broadband, synchronized femtosecond source of keV x-rays. Electron bunch spectra and divergence were measured simultaneously and preliminary analysis shows correlation between x-ray andelectron spectra. Bremsstrahlung background was managed using shielding and magnetic diversion
- …