85 research outputs found

    High frequency oscillatory ventilation and prone positioning in a porcine model of lavage-induced acute lung injury

    Get PDF
    BACKGROUND: This animal study was conducted to assess the combined effects of high frequency oscillatory ventilation (HFOV) and prone positioning on pulmonary gas exchange and hemodynamics. METHODS: Saline lung lavage was performed in 14 healthy pigs (54 ± 3.1 kg, mean ± SD) until the arterial oxygen partial pressure (PaO(2)) decreased to 55 ± 7 mmHg. The animals were ventilated in the pressure controlled mode (PCV) with a positive endexpiratory pressure (PEEP) of 5 cmH(2)O and a tidal volume (V(T)) of 6 ml/kg body weight. After a stabilisation period of 60 minutes, the animals were randomly assigned to 2 groups. Group 1: HFOV in supine position; group 2: HFOV in prone position. After evaluation of prone positioning in group 2, the mean airway pressure (P(mean)) was increased by 3 cmH(2)O from 16 to 34 cmH(2)O every 20 minutes in both groups accompanied by measurements of respiratory and hemodynamic variables. Finally all animals were ventilated supine with PCV, PEEP = 5 cm H(2)O, V(T )= 6 ml/kg. RESULTS: Combination of HFOV with prone positioning improves oxygenation and results in normalisation of cardiac output and considerable reduction of pulmonary shunt fraction at a significant (p < 0.05) lower P(mean )than HFOV and supine positioning. CONCLUSION: If ventilator induced lung injury is ameliorated by a lower P(mean), a combined treatment approach using HFOV and prone positioning might result in further lung protection

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Caution-closed suction systems!

    No full text
    corecore