331 research outputs found

    Quasiparticle interaction in nuclear matter with chiral three-nucleon forces

    Full text link
    We derive the effective interaction between two quasiparticles in symmetric nuclear matter resulting from the leading-order chiral three-nucleon force. We restrict our study to the L=0,1 Landau parameters of the central quasiparticle interaction computed to first order. We find that the three-nucleon force provides substantial repulsion in the isotropic spin- and isospin-independent component F_0 of the interaction. This repulsion acts to stabilize nuclear matter against isoscalar density oscillations, a feature which is absent in calculations employing low-momentum two-nucleon interactions only. We find a rather large uncertainty for the nuclear compression modulus due to a sensitive dependence on the low-energy constant c_3. The effective nucleon mass on the Fermi surface, as well as the nuclear symmetry energy, receive only small corrections from the leading-order chiral three-body force. Both the anomalous orbital g-factor and the Landau-Migdal parameter g'_{NN} (characterizing the spin-isospin response of nuclear matter) decrease with the addition of three-nucleon correlations. In fact, the anomalous orbital g-factor remains significantly smaller than its value extracted from experimental data, whereas g'_{NN} still compares well with empirical values. The inclusion of the three-nucleon force results in relatively small p-wave (L=1) components of the central quasiparticle interaction, thus suggesting an effective interaction of short range.Comment: 20 pages, 6 figure

    Homocysteine in dogs with systemic inflammatory response syndrome

    Get PDF
    OBJECTIVES - To compare serum concentrations of homocysteine (Hcy) in dogs fitting the criteria for the systemic inflammatory response syndrome (SIRS) and healthy dogs, and compare these values to commonly measured B-vitamins. METHODS – Study dogs were classified into noninfectious SIRS or sepsis groups and blood was drawn on Day 1 of the patient’s hospitalization for the measurement of Hcy, folate and cobalamin concentrations. Hcy was measured in 51 clinically normal dogs to serve as the control group. RESULTS - A statistically significant difference was found between the Hcy concentrations of the healthy group when compared to noninfectious SIRS and sepsis groups. Hcy values were not correlated with folate, cobalamin or APPLEfast severity scores. Hcy concentrations were significantly lower in sick dogs when compared to the control group, which is dissimilar to the human population. CLINICAL SIGNIFCANCE - The clinical significance of Hcy changes in critically ill dogs is currently unknown.http://aac.asm.orghb2014ab201

    Small-scale solar magnetic fields

    Get PDF
    As we resolve ever smaller structures in the solar atmosphere, it has become clear that magnetism is an important component of those small structures. Small-scale magnetism holds the key to many poorly understood facets of solar magnetism on all scales, such as the existence of a local dynamo, chromospheric heating, and flux emergence, to name a few. Here, we review our knowledge of small-scale photospheric fields, with particular emphasis on quiet-sun field, and discuss the implications of several results obtained recently using new instruments, as well as future prospects in this field of research.Comment: 43 pages, 18 figure

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil

    A Search for Selectrons and Squarks at HERA

    Get PDF
    Data from electron-proton collisions at a center-of-mass energy of 300 GeV are used for a search for selectrons and squarks within the framework of the minimal supersymmetric model. The decays of selectrons and squarks into the lightest supersymmetric particle lead to final states with an electron and hadrons accompanied by large missing energy and transverse momentum. No signal is found and new bounds on the existence of these particles are derived. At 95% confidence level the excluded region extends to 65 GeV for selectron and squark masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure

    Color superconducting quark matter core in the third family of compact stars

    Get PDF
    We investigate first order phase transitions from β\beta-equilibrated hadronic matter to color flavor locked quark matter in compact star interior. The hadronic phase including hyperons and Bose-Einstein condensate of KK^- mesons is described by the relativistic field theoretical model with density dependent meson-baryon couplings. The early appearance of hyperons and/or Bose-Einstein condensate of KK^- mesons delays the onset of phase transition to higher density. In the presence of hyperons and/or KK^- condensate, the overall equations of state become softer resulting in smaller maximum masses than the cases without hyperons and KK^- condensate. We find that the maximum mass neutron stars may contain a mixed phase core of hyperons, KK^- condensate and color superconducting quark matter. Depending on the parameter space, we also observe that there is a stable branch of superdense stars called the third family branch beyond the neutron star branch. Compact stars in the third family branch may contain pure color superconducting core and have radii smaller than those of the neutron star branch. Our results are compared with the recent observations on RX J185635-3754 and the recently measured mass-radius relationship by X-ray Multi Mirror-Newton Observatory.Comment: 24 pages, RevTex, 9 figures included; section II shortened, section III elaborated, two new curves in Fig. 9 and acknowledgements added; version to bepublished in Phys. Rev.
    corecore