1,935 research outputs found

    Numerical investigation of a jet in ground effect using the fortified Navier-Stokes scheme

    Get PDF
    One of the flows inherent in VSTOL operations, the jet in ground effect with a crossflow, is studied using the Fortified Navier-Stokes (FNS) scheme. Through comparison of the simulation results and the experimental data, and through the variation of the flow parameters (in the simulation) a number of interesting characteristics of the flow have been observed. For example, it appears that the forward penetration of the ground vortex is a strong inverse function of the level of mixing in the ground vortex. Also, an effort has been made to isolate issues which require additional work in order to improve the numerical simulation of the jet in ground effect flow. The FNS approach simplifies the simulation of a single jet in ground effect, but it will be even more effective in applications to more complex topologies

    Flux vector splitting of the inviscid equations with application to finite difference methods

    Get PDF
    The conservation-law form of the inviscid gasdynamic equations has the remarkable property that the nonlinear flux vectors are homogeneous functions of degree one. This property readily permits the splitting of flux vectors into subvectors by similarity transformations so that each subvector has associated with it a specified eigenvalue spectrum. As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided spatial differences for each split flux vector are used throughout the computational field even if the flow is locally subsonic. The results of some preliminary numerical computations are included

    Some experiences with the viscous-inviscid interaction approach

    Get PDF
    Methods for simulating compressible viscous flow using the viscid-inviscid interaction approach are described. The formulations presented range from the more familiar full-potential/boundary-layer interaction schemes to a method for coupling Euler/Navier-Stokes and boundary-layer algorithms. An effort is made to describe the advantages and disadvantages of each formulation. Sample results are presented which illustrate the applicability of the methods

    On computations of the integrated space shuttle flowfield using overset grids

    Get PDF
    Numerical simulations using the thin-layer Navier-Stokes equations and chimera (overset) grid approach were carried out for flows around the integrated space shuttle vehicle over a range of Mach numbers. Body-conforming grids were used for all the component grids. Testcases include a three-component overset grid - the external tank (ET), the solid rocket booster (SRB) and the orbiter (ORB), and a five-component overset grid - the ET, SRB, ORB, forward and aft attach hardware, configurations. The results were compared with the wind tunnel and flight data. In addition, a Poisson solution procedure (a special case of the vorticity-velocity formulation) using primitive variables was developed to solve three-dimensional, irrotational, inviscid flows for single as well as overset grids. The solutions were validated by comparisons with other analytical or numerical solution, and/or experimental results for various geometries. The Poisson solution was also used as an initial guess for the thin-layer Navier-Stokes solution procedure to improve the efficiency of the numerical flow simulations. It was found that this approach resulted in roughly a 30 percent CPU time savings as compared with the procedure solving the thin-layer Navier-Stokes equations from a uniform free stream flowfield

    A formulation for the boundary-layer equations in general coordinates

    Get PDF
    This is a working paper in which a formulation is given for solving the boundary-layer equations in general body-fitted curvilinear coordinates while retaining the original Cartesian dependent variables. The solution procedure does not require that any of the coordinates be orthogonal, and much of the software developed for many Navier-Stokes schemes can be readily used. A limited number of calculations has been undertaken to validate the approach

    Use of hyperbolic partial differential equations to generate body fitted coordinates

    Get PDF
    The hyperbolic scheme is used to efficiently generate smoothly varying grids with good step size control near the body. Although only two dimensional applications are presented, the basic concepts are shown to extend to three dimensions

    Drivers for the use of materials across countries

    Get PDF
    This paper analyses drivers for resource use and material productivity acrosscountries. This is not only relevant in light of soaring raw material prices but also because EU policies, such as the ‘Thematic Strategy on the Sustainable Use of Natural Resources’ (COM [2005] 670), the EU Raw Materials Initiative (COM [2008] 699) and various similar policies internationally, seek to better manage materials along their life-cycle and across economies. In order to better understand the system dynamics of material use, our paper applies methodologies of material flow analysis and regression analysis to identify the major drivers for resource use and decoupling from GDP. Drivers are understood as those factors that exert influence on human activities to use resources. A panel data set is taken for the European Union for the years 1980–2000 (EU-15) and 1992–2000 (EU-25). The main drivers of resource use were found to be energy efficiency, new dwellings and roads construction activities. Shortcomings of the methodology are also discussed

    Optomechanical coupling and damping of a carbon nanotube quantum dot

    Full text link
    Carbon nanotubes are excellent nano-electromechanical systems, combining high resonance frequency, low mass, and large zero-point motion. At cryogenic temperatures they display high mechanical quality factors. Equally they are outstanding single electron devices with well-known quantum levels and have been proposed for the implementation of charge or spin qubits. The integration of these devices into microwave optomechanical circuits is however hindered by a mismatch of scales, between typical microwave wavelengths, nanotube segment lengths, and nanotube deflections. As experimentally demonstrated recently in [Blien et al., Nat. Comm. 11, 1363 (2020)], coupling enhancement via the quantum capacitance allows to circumvent this restriction. Here we extend the discussion of this experiment. We present the subsystems of the device and their interactions in detail. An alternative approach to the optomechanical coupling is presented, allowing to estimate the mechanical zero point motion scale. Further, the mechanical damping is discussed, hinting at hitherto unknown interaction mechanisms.Comment: 17 pages, 13 figures, 3 table
    • …
    corecore